
AD-A243 701

DTIC

A WALSH-DOMAIN ADAPTIVE FILTER

THESIS

Larry J. Duvall
Captain, USAF

AFIT/GE/EN G/91 D- 15

Approved for public release; distribution inlimited

9 .19041 91 1224 073

REPORT DOCUMENTATION PAGE OM For Approved8
P'jolC tebr-g burden :r -ns ole~tcon _- -to-~at,on $ etmatec to 4.erage I-our Der resoc -e rc" in the time -or revewing in~trutiCfl% wdr,"r -!%,ting data Sorces
gathertri 300 1airtaining the data, neece,. ad orroetingand revie-rq :'re .. JOect-on of information ')enr comments r. ru tsbre iae ri 1 te set~ e
coilertion ;t information, riciudoig sugesl :-s 'or reouuo ths curoen :: ashnnqton ,1eaacir-.eS ;er.ices. Directorate for infior-aon Ooerations aro Reports, ii t5 ,etoerson.
DavsHiqr~rav. suite 12C...rrton, ,A -:2-4302 ara to t'e Offi.e t M.anagement 308 dudget PioerniOrc Reduc~on Project 3,C,1-0188I.Washington. ZC 20503,

1. AGENCY USE ONLY (Leave ,)ianK) j2. RJ3ORT gATE1 9 3. RENRI TY.P~tND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Walsh-domain Adaptive Filter

6. AUTHOR(S
Larry . Duvall, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATICN
Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AF1T/G3E/ENG/91D-15

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING. MONITORING
AGNYREPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. OISTRIBUTZO,N /AVAILA BILTY STAT.MET . .. I12b. DISTRIBUTION CODE
Approved ior pu ilc release; distribution unlimited

_rAf TR fas-domin dyac"V convolution adaptive filters are developed using a circular convolution frequency-
domain filter (FDF1) and the Fast LMS adaptive filter (FDF2): WDF1 and WDF2 respectively. General theory
of time-domain adaptive filters and a theoretical analysis of the FDF1, FDF2, WDF1, and WDF2 filters are
presented. WDF1 and WDF2 software implementations are shown to be error free. A time-domain filter (TDF)
and a FDF2 frequency-domain filter (FDF) are implemented for comparison testing. The WDF1, WDF2, TDF,
and FDF filters are tested using time-shifted sinusoidal and rectangular noisy and noiseless signals. WDF1 and
WDF2 are shown to converge faster and produce less error filtering discoLfinuous signals, relative to the TDF and
FDF performance. WDF1 and WDF2 are shown to converge slower and produce more error filtering continuous
signals, relative to TDF and FDF performance. WDF1 is shown to perform better for noiseless signals, relative
to WDF2 performance. WDF2 is shown to perform better for noisy signals, relative to WDF1 performance.
WDF1 and WDF2 filtering performance was shown to degrade with increasing time shift. A processing speed
comparison showed WDF1 to be faster than the TDF, FDF, and WDF2 filters.

14. tiv Fitr Walsh Transform, Least Mean Square15N4EROPAS

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION I19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

b~clasifffed K MESS NO e5 T UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Petrnb'd by ANISI Sil Z39-18
298': 02

AFJT/GE/ENG/91D- 15

A WALSH-DOMAIN ADAPTIVE FILTER

THESIS

Presented to the Faculty of the School of Engineering/

of the Air Force Institute of Technology rp

Air University6

In Partial Fulfillment of the

Requirements for the Degree of A.S~ ~

Master of Science in Electrical E~gineerinig 3 R&I 4
Jul : 1JiVa 03 1

ly

Larry% i. Duvall, B.S.E',.E. o, ~

Captain, USA F

Decemb Ier 1991

Approved for lpulblic release; (list ril tioii uiliritecl

Preface

The purpose of this study was to Investigate the development of a \Valsli-domnain adap-

tive filter. Discrete Walsh-domnain signal processing p~rov'ides comlputational and hiardw~are

simp~lification versus discrete fiequency-domain signial processing ('quiremlents. lhci elorc..

cle~elopmeflt of a Walsh-domnain adapti~e filtei would piovide a iobust, ,elf-dlesigniing big-

Dal I)r'OCe-SsO sulitable foi applications which Iiniit. availal)ie powei and slpace. pail iculai I)

sIpace-lba~cd sinlproces'sing. B\~ extending a cliculai convolution fi (uenicy-domin dwlap-

tive filter and the Fast LMNS frccjuenc'--doniain adlaptive filter into the \Valsli-coniainl. two

\'Valsh-clom am adaptive filters were developed.

I can not fully express in% appreciatiton of thle invalutable guidance pro\ ided by m\ thesis

advisor, Captain Rob WVilliamis. His helpful suggestions were not metle Cookbook solutions.

they provided this student wvith exciting opport uni ties for (liscovery and insighlt. I would

also like to thank those onl the thesis commit tee; Dr Matthew IKabriskv and Martin Desiinio.

Abhove all. I thalitk Ill. best friend andl wife. Shannon. l.\n- accomp jlishmnents that I

have mlade were ('alied by her sacrIifice-'.

Larry .1. Dxival

Table of Contents

Page

P reface . ii

List of Figures viii

List of Tables xvi

Abstract .. xviii

I. Introduction 1-1

1.1 Background 1- 1

1.1.1 The Walsh-Domain 1-1

1.1.2 Adaptive Filters 1-4

1.2 Problem Statement 1-5

1.3 Research Objective 1-7

1.4 Review of Literature 1-7

1.4.1 W,\alsh-Domain Adaptivc Filer. 1-7

1.4.2 Adaptive \Valsh Ecualiser.. 1-7

1.5 Assumptions 1-7

1.6 Scope 1-S

1.7 Hardware Requirements 1-8

1.8 Software Requirejnents 1-8

1.9 Approach and Presentation

1.10 Original Research Contributions 1-9

III

Pagre

HI. Backgrouind. 2-1

2.1 Walshi-Domain Theory- 1

2.1.1 Walsh Functionis..- 1

2.1.2 Discrete Walsh Transform. 2-2

2.1.3 Circular Time Shift Effects. 2-4

2.1.4 Convolution.. 2-4

2.1.5 Correlation 2-6

2.2 Adaptive Filters. 2-6

2.1 Timie-domain Adaptive Filters.-

22.2 Block Processing Adaptive Filters. 2-11

2.:3 Chapter Summiar 2-25

111. W-alshi-Domaini Filter Design 3-1

3.1 W-alshi-Domain Filter 1 (WDF1) 3-1

3. 1.1 WDF1 Time-domain Input Vector Definition 3-1

3.1.2 WDFI \Valsh-domain Input. 3-3

:3.1.3 WDF I Output Calculation1. 3 :1

:3. 1.4 WDFJ \Vals -c(Iomia in Wkeight Upd.ate 3-4

3.1.5 WVDF1 Tim-e-domain Representation11.. 3-5

3.1.6 WI)FI Optlimum Wkeight Vector 3-7

3.1.7 WDF1 Computational -Repuiremients. 19

:3.2 WValsh-Douiain Filter 2 (\V1)F2) 310

:3.2.1 WDF2 'Jimie-dorniaii Input Vector Def4inition1. 3-10

:3.2.2 WI)F2 WValsh-domiain Input. 3-11I

3.2.:3 WJ)F2 Output Calculation 3-11

3.2.4 WDF2 Walsh-dom-ain W~eight Update 3-12

3.2.5 WDF2 Timec-domain IRhpreseutation. 3-15

3.2.6 WDF2 Optimium W-eight VctOr1.... 31 7

iv

Page

3.2.7 WDF2 Computational Requirements 3-18

3.3 Chapter Summary 3-19

IV. Filter Verification 4-1

4.1 Introduction 4-1

4.2 Software Algorithin Identification And 'resting 4-1

4.2.1 Comparison Filters 4-1

4.2.2 Gain Constant Calculation 4-1

,t.2.3 WDF1 Filter 4-:3

4.2.4 WDF2 Filter 4-8

4.3 Filter Verification Test 2 4-21

4.4 Single Tap Time-domain Filter Test 4-27

4.15 Chapter Summary 4-29

V. Filter Testing and Comparison. 5-1

5.1 Introduction 5-

5.2 Time-shifted Signal Tests5-

5.2.1 Signal Test 1 5-2

.5.2.2 Signal Test 2 5-14

5.2.3 Signal Test 3 5-28

5.2.4 Signal Test 4 5-3.5

.5.3 Filter Processing Speed Comparison 5-5.1

5.4 Summary......................................

VI. Conclusions and RecomIIen.ions....................... 6-1

6.i Conclusions 6-1

6.1.1 Error Performance Conclusions 6-1

6.1.2 Convergence Speed Performance Conclusions 6-2

6.1.3 Processing Speed Performance Conclusions 6-2

Page

6.1.4 Filtering Limitations. 6-3

6.2 Subjective Ranking. 6-3

6.3 Recommendations 6-3

Appendix A. Discrete Walsh Transform. A-1

A-1 Discrete Walsh Functions A-i

A.2 Dyadic Convolution A-2

A.3 DXVT of Time-shifted periodic signals. A-9

A.3.1 Sinusoid A-9

A.3.2 Rectangular A-14

Appendix B. \'DF1 Weight Update B-i

B-1 Walsh-Domain Gradient. B-i

B-2 Time-domain Gradient B-4

Appendix C. WDF2 Weighit Update C-i

C-1 Walsh-Domain Gradient. C-i

C-2 Time-domnain Gradient C-S

App~endiX 1). FDFI W-eight Update D-1

D-1 Frccjuencv-lDomain G-adient D-1

D-2 Time-domnain Gradient. D-2

Appendix E. FDF'2 W-eight Ii pcate.

E.lI Frequency-Domnain Gradient Ed

E-2 Timec-domain Gradient E-s

Appendix F. Program Listings F-I

F.1 WDFI Filter Listing...................F-i

F.2 WDF)2 ilter Listing. F-IS8

V.I

Page

F.3 FDF Filter Listing F-35

FA4 TDF Filter Listing F-53

Vita. VITA-i

Bibliography BIB-i

vii

List of.,gue

Figure Page

1. 1. Discrete Walsh Functions for IN' 8, in secjuencv order. 1-3

1.2. Adaptive Filter. 1-4

1.3. Adaptive Transversal Filter 1-5

1.4. A Frequency- Doinain Adcaptive Fi Itei 1-6

2.1. Adaptive Filter Block DiagTraml.. 2-7

2..Adaptive Transversal Filter 2-8

2.:3. Frequencv-dornai n Adaptive Filter 2-12

2.4. Frequency-domnain Filter 2 (FDF2) 2-19

3.1. WValsh-domnain Adaptive Filter 1 (WDF1) 3-2

3.2. Walshi Adaptive Filter 2 (WNDF2). 3-13

41.1. The 1)WPF of one p)eriod of the Inp~ut Signal 4-6

4.2. The DWVT of one j)Iilocl of the Desired Signal. 4-6

4.3. \W\DF*I Verification 'Pest Input Signals 4-7

,1.4. WNDF1 Filter Verification Test Output Error 4-7

4.5. The 16-point DWT' of twvo periods of the Input Signal. 4-9

4.6. The I 6-point DW'f of two periods of the Desired Signal. 4-10

4.7. Tlhe 16-point l)WT of the initial In put vector. 4-0

,i.&\VDP2 Filter Verification TPest Out put Error 1-11

'1.9. W,%DF1 IHo(k) Adaptation Track 4-1:3

4.10. WVDFl H1 (k) Adaptation Track 4-13

4.11. WI)FI 1!2 (k) Adaptation Track 4-13

4.12. WDFI I!3(k) Adaptation Track 4-14

vi

Figur e Page

4.13. WDFI11Ii 1(k) Adaptation Track 4-14

4.14. WDFI 115(k) Adaptation Track 4-14

4.15. WDFI H16(k) Adaptation Track 4-15

4.16. WDF1 117(k) Adaptation Track 4-15

4.17. WDF2 fHo(k) Adaptation Track 4-15

4.18. WDF2 111(k) Adaptation Track 4-16

4.19. WDF2 112,(k) Adaptation Track 4-16

4.20. NVD F2 113 (k) Adaptat'on Track 4-16

4.2'.. N-NDF2 1I. 1 (k) Adaptation Track.- 17

41.22. WVDF2 11.5(k) Adaptation Track 4-17

4.23. WDF2 II(;(k) Adaptation Track 4-1S

4.24. WDF2 117(k) Adaptation Track 4-1S

4.2-5. WDF2 118(k) Adaptation Track. 418

4.26. WDF2 119 (k) Adaptation Track 4-19

4.27. WDF2 Ii,0 (k) Adaptation Track 4-19

4.28. WI)F2 1111(k) Adaptation Track.- 19

41.29. WI)F2 1112 (k) Adaptation Track. 20

4.30. W-\DF2- II13(k) Adaptation Track 4-20

.1-:31. \\:j)J>) 111 ,(k) Adaptaton Track.- 20

4.:32. NVDP2- III.dk) Adlaptation Track. 21

-1.33. Verification Test. 2 Configmiration 4-22

-1.341. WDF2 filter tap lJ Ho) 1(k) adaptation track for noise Input and filtered

noi1se desired signi-al uising constant bill p and ,If = 0.1 1.- 1-24

4l.35. WDF2 Ratioo(k). This is the ratio of the noise input 8-point DNVT b~in 0

and the filtered noise desired signal S-point DWT bin 0 versus k.......4-24

4.36. WDF2 fillet tap IL~r(k): 115(k) adaptation track for noise Input, and filtered

noise dlesired signal Using constant bill if and AI = 0.1. 1-2.5

ix

.:.37. XVDF2 _ IRati'o,(k). This is the ratio of the noise Input 8-point l)WT bill 5

and tlit(-itered nloise desired signal S-point D)WT binl 5 Versus k . 4-25

-1.38. \VDF2 filter tap 112(k): 112(k) adaptation track for ttoise !npu! and filtiered

noise dlesired signlal usingf constarm bill ji and .11 = 0 .1

-1.39. \WI)F2 P~tio,(k). This Is the ratio of the noise input S-point 1)WT bill 2

andl the filtered noise desire. signal S-point D\V.. binl 2 versus k.- 26

-1.40. Single Tap Time-domain Filter C.onlfigu ration11.. '-27

4.4 1. Single 'lap Tilte-domain Filter Test: x,2. Th'its Is t'sic filtered noise Input. . -2S

4.42. Single Tap Tiniv-dontain Filter T11est: ho(i). This is the 120(i) adlajtatiOnl

track versus I 1-2S

4.413. Single lap lime-donmin Filter lest: ftho~i.This js the ratio of the

dlesiredl constant to the(filtered noise input signal versus I.- 1-26

.5.1. Sienal Te!st I Rctangul!ar ...e. . .-.-.-----------------------------53

.5.2. Signal Test 1: 1 - -,hirt filter iptus. Th'ils is the noiseless I - sIhi ft rect-

anular ;nrmt andl desired simial -

5.3. Signal Test 1: WD11-'l filer output error for I - shi ft input. This is the

\VDF I Jil tit error "r I te(iast 96 outpai samnples 'ising .11 = 0.5. 5

-.4 Signal Test i : WI) 12 hlter outunmt error for I - shiff input.-Ti iN the(

XW!)V2 output error for .te las! 96 0111put sam iples uISIng 311 0.5-----------. 5

5).5. S*-inal Test 1 : TDF filter output error for 1-.h'ff iltliat T his is 'he 1-1):

.utp~ut. ernor for tite last 96 outI puit sapl~es using .11' 0.5-----------5-6

5.6. Signal lTVe 1: 1:1)1 filter mu~put error for I -shifI l u This is thle Fl)2
filter out put error foi i lie last 96 e.tput sample's ;.ing 31 = 0.)--------56

.. -Si~aI est . - %h~ft filter inputs. This is the noiseless 31 -- s.hifl le

anguilar Input and' desf-ired-- -----

5. Signal '1lest I: W)F I filter out put (error for 3 - 4hzfl i nput.-Ut: is lhe

WI)Fl output error for the- lAt 9G output nampies using 31 = 0.1.---

0.. Slinal 'lest I: WlDFK filter output11 error For 3 - .h12 1 input . This is the

WI)F2 output error for the lMust 96 out put sanq;es using 1 i ...- -

Figure Page

5.10. Signal Test 1: TDF filter output error for 3 - shift input. This is the TDF

output error for the last 96 output samples using M = 0.1 5-9

5.11. Signal Test 1: FDF filter output error for 3 - shift input. This is the FDF

filter output error for the last 96 output samples using AI = 0.1 5-9

5.12. Signal Test 1: 4 - shift filter inputs. This is the noiseless 4 - shift rect-

angular input and desired signal 5-10

5.13. Signal Test 1: WDF1 filter output error for 4 - shift input. This figure

depicts the WDF1 output error for the last 96 output samples using Al = 0.1. 5-11

5.14. Signal Test 1: WDF2 filter output error for 4 - shift input. This is the

WDF2 output error for the last 96 output samples using Al = 0.1..... 5-11

5.15. Signal Test, 1: TDF filter output error for - shift input. This is the TDF

output error for the last 96 output samples using Al = 0.1 5-12

5.16. Signal Test 1: FDF filter output error for 4 - shift input. This is the FDF

output error for the last 96 output samples using Al = 0.1 5-12

5.17. Signal Test 2: 0 - shift inputs. This is the last 96 samples of the noisy

0 - shift rectangular input and desired signal 5-15

5.18. Signal Test 2: WDF1 filter output. error for 0 - shift input. This is the

WDFI outl)ut error for the last 96 output. samples using A4 = 0.055-15

5.19. Signal Test 2: WDF2 filter output error for 0 - shift input. This is the

WD F2 output error for the last 96 output samples using l = 0.05 5-1

5.20. Signal Test 2: TDF filter output error for 0 - shift input. This is the TDF

eatput error for the last 96 output saml)les using l = 0.05 5-16

5.21. Signal Test 2. FDF filter out-put error or 0 - ,hi,/ft input. Tphis is the' FDF

output error for the last, 96 output samples using l = 0.05 5-17

5.22. Signal Test. 2: :3 - shift filter inputs. This is the last. 96 samples of the

noisy 3 - shilf rectangular input and desired signal 5-18

5.23. Signal Test 2: WDF1 filter output error for 3 - shift input. This is the

WDF1 output error for the last 96 output, samples using Al = 0.1..... 5-19

5.24. Signal Test 2: WDF2 filter output error for 3 - shift input. This is the

WDF2 output error for the last 96 output samples using M = 0.1..... 5-19

xI

Figure P "e

5.25. Signal Test 2: TDF filter output error for 3 - shift input. This is the TDF

output error for the last 96 output samples using AI = 0.1 5-20

5.26. Signal Test 2: FDF filter output error for 3 - shift input. This is the FDF

output error for the last 96 output samples using Al = 0.1 5-21

5.27. Signal Test 2: 4 - shift filter inputs. This is the last 96 samples of the

noisy 4 - shift rectangular input and desired signal 5-22

5.28. Signal Test 2: WDF1 filter output error for 4 - shift input. This is the

WDF1 output error for the last 96 output samples using M = 0.1 5-22

5.29. Signal Test 2: WDF2 filter output error for 4 - shift input. This is the

WI)F2 output error for the last 96 output samples using Al = 0.1..... .5-23

5.30. Signal Test 2: TDF filter output error for 4 - shifI input. This is the TDF

output error for the last 96 output samples using A] = 0.1 5-23

5.31. Signal Test 2: FDF filter output error for 4 - shift input. This is the FDF

output error for the last 96 output samples using M = 0.1 5-24

5.32. WDF1 Bin Tap 111(k). This figure depicts the WDFI H(k) adaptation

track for the noisy 4 - shift rectangular signal 5-26

5.33. WDF1 Ratiol(k). This figure depicts the WDF1 spectral bin I input to

desired ratio 5-26

5.34. \VDF2 Bin Tap 113(k). This figure depicts tl, WIDF2 113(k) adaptation

track for the noisy 4 - shifl rectangular signal 5-27

5.35. WDF2 Ratioa(k). This figure depicts the WDF2 spectral bin :3 input to

desired ratio ... 5-27

5.36. Signal Test 3 Sinusoidal Waveform 5-29

5.37. Signal Test 3: 4 - shift filter inputs . This is the noiseless ,t - il./l

sinusoidal input and desired signal 5-30

5.38. Signal Test :3: WNDFI filter output, error for 4 -. shift input. This figure'

depicts the WDF1 output error for the last 96 output samples using Al = 0.1. 5-30

5.39. Signal Test 3: WDF2 filter output error for 4 - shiJ't input. This is the

WDF2 output error for the last 96 output samples using All = 0.1..... 5-31

5.40. Signal Test 3: TDF filter output error for 4 - shift input.. This is the TFI.)I'

output error for the last, 96 output samples using Al = 0.1 5-31

xii

Figure Page

5.41. Signal Test 3: FDF filter output error for 4 - shift input. This is thle FDF

output error for the last 96 output samp~les using Al = 0.1. 5-32

5.42. Signal Trest, 4: 0 - shift inp~uts. This is the last 96 samples of the noisy

0 - shift sinusoidal input and desired signal. 5-36

5.43. Signal Test 4: WDF1 filter output error for 0 - shift input. This is the

WNDF1 output error for the last 96 output samples using Al = 0.1 5-36

5.44. Signal Test 4: NVDF2 filter output error for 0 - shift input. This is thle

\'VDF2 output error for the last 96 output samples using Al =0.1......5-37

5.45. Signal Test 4: TDF filter outp~ut error for 0 - shift Input. This is the TDF

outlput error for the last 96 outlput samp~les using M' = 0.1. 5-37

5.46. Signal Test, 4: FDF filter output error for 0 - s;hilft Input. This is the FDF

out put, error for the last 96 outp~ut samp~les using Al = 0.05 5-3S

5.47. Signal Test 4: 2 - shzft filter inp~uts. This is the last 96 samples of the

noisy 2 - shift sinusoidal input and desired signal. 5-39

5.48. Signal Test 4: WDF1 filter output error for 2 - shift input. This is the

WDFI outp~ut error for the last. 96 output samples using Al = 0.1.......5-40

5.49. Signal Test. 4: NVDF2 filter outp~ut cimr for 2 - shift input,. This Is the

\VIl'-'2 output error for the last 96 output samples using Al = 0.1........5-40

5-.0. Signal Test. 4: TDF filter output error for 2- shift Input. 'This is the TDF

outp~ut err-or for the last 96 output samles using Al = 0.1. 5-41

5.51 I. Signal lest 4: FDF filter outlput error for 2 - shift inlput. This is the]"DF

Out put error for the last 96 ou1tj)ut s-amples using Al = 0.1. 5-41

5.52. Signal 'Pest, 4: 4 - .shift filIter inputs. 'Phis is the last 96 saminples of' the

noisv 4 - shift sinusoidal Input. and desired sigznal 5-42

.5.53. Signal Test 4: W DA"l filtr cI1uput err-or for 4I - .4 i/I hipt. This Is the

NWDFI output. erioi' for the last. 96 output samples tusing .i1 = 0. 1.......5-43

.5-4. Signal TPest 4: WI)F2 filter output error for 4 - shift in)put. This is thle

\WNDF2 output error for the last 96 outlput samhples using Al = 0.1.......5-43

5.5-5. Signal 'Pest 4: TDE filter output. error for 41 -. ,shiftI input,. This is the 'IDE

out.Jput, error for the last 96 Output saml)ics using A~l = 0. 1 5-44l

%Mu

Figure Page

5.56. Signal Trest 4: FDF filter output error for 4 - shift input. This is the FDF

output error for the last 96 outp~ut sampJles using Al = 0.1. 5-44

5.57. Signal Test 4: WVDFi filter tap 119(k) for the 2 - shift input using inde-

pendent bin It and M' = 0.1. 5-46

5.58. Signal Test 4AWDF1 Ratiog(k). This is the ratio of the 2 - shift input

16-point D\VT bin 9 and the desired signal 16-point DNVT bin 9 versus k. 5-46

5.59. Signal Test 4: WDF1 filter tap 1113(k) for the 2 - shift input using inde-

p~endent bin It and Al = 0.1 5-47

5.60. Signal Test 4:WVDF1 RatiO13(k). This is the ratio of the 2 - shift input

16-point DW-T b)in 13 and the desired signal 16-point DWVT bin 13 versus k. 5-17

5.61. Signal Test 4: NADF2 filter tap 1119(k) for the 2 - shift input using Inde-

p~endlent binl li and Al = 0.1. 5-48

.5.62. Signal Test 4:WDF2 Ratioi9 (Ic). This is the ratio of the 2 - sh?ft input

32-point DWVT bin 19 and the desired signal 32-point DWVT bin 19 versus k. 5-48

5.63. Signal Test 4: \'VDF2 filter tap 1127(k) for the 2 - shift inp~ut using inde-

pendlent bin It and Al = 0.1 5-49

.5.64. Signal Test 4:WVDF2 Ratio27(k). This is the ratio of the 2 - shift input

:32-point DWVT bin 27 and the desired signal :32-point DWVT binl 27 versus k. .5 -49

5.65. Signal Test -1: WDFI filter top 119(k) for the 4 - shif IInput, using indeI-

pendernt bin I/ and Al = 0.1....- 0

5.66. Signal Test, *:WDFI Ratio9)(k). This is the ratio of the 4 - hif I input,

16-point. 1)IT bin 9 and the desired signal 16-point DWVT bin 9 versus k. -0

5.67. Signal Test -1: W-DFI1 filter tap) 1113(R) for the 4 - shift Input, using incle-

pendent binl y and H = 0.1... 5

.5.68. Signal Test. 4AVWJ)F Ratioj-(k). This Is the raltio of thle .1 -- shiiftI ilut

16-point DN)WT bll 1:3 and the desired signal 16-point. DWVT binl 1:3 versus k. 5-51

5.69. Sign.1 Test 4: WVDF2 filter tap) 1 19(k) for the 4 - shi ft Input using incle-

pendent bin y and Al = 0.1 5-52

5.79j. Signal 'Pest, 4AWDF 2 Ratiols9 (k). This is the ratio of thle 4 - shift input,

32-point l)WT bin 19 and the dlesired signal 32-point DWVT bin 19 versus k. .5-52

Figure Page

5.71. Signal Test 4: WDF2 filter tap 1127(k) for the 4 - shift input using inde-

pendlent bin it and AlI = 0.1. 5-53

5.72. Signal Test, 4:NVDF2 Ratio 27(k). This is the ratio of the 4 - shi'ft input

32-point DWT bin 27 and the cdesired signal 32-point DWT bin 27 versus k. 5-33

A. 1. Discrete Walshi Functions for N = 8, in sequency order A-3

A.2. This is a sinusoid with 16 sample period and amplitude of 5. A-10

A.:3. This is the DWrr of one period of the 0 - shift sinusoid A-10

A.4 This is the DWT of one period of the I - shift sinuIsoid A-il

A.5. This is the DWVT of one period of the 2 - shi'ft sinusoid A-il

A.6. This Is the D\VT of one period of the :3 -- shift sinusoid A-1l

A. 7. This is the DWT of one period of the 4 -- shift sinusoid A-12

A.S. This is the DNVT of two periods of the 0 - shift sinusoid A-12

A.9. This is the DWT of two periods of the 1 - shif t sinusod A-)2

A.10.This is the DWT of two periods of the 2 - shift sinusoid. A-13

A. H.This is the DW'T of two periods of the 3 - shift sinusoid. A-I3

A. I 2.'rTlIis Is the DWT of two periods of the -1 - .5hif I sinusoid A-1 3

.HI:.ThIs is a rect angvular "iginal wit It 16 sample period and amplitude of .5 . A- I
A .1-.Th is is the I)WT of one period of thle 0 - . retnuarsga.....AI

A.]5.Tisis he)W ofonepeiodof heI -shft rectangular signal. A-I5

A.15.This Is the D\\T of one period of the 2 ,; hijt rectangular signa11. A-1.5

A.l 7.This Is the DW'P of'one period of the 23 qhz'i.ft rectang'ular signal. A - 16

A.] ISTuis Is~ the liWT of one period ofthe :3 - shift rect-angular signal. A- 16

A. I8 11TuIs Ii the DM i' of to lperiod of the 0 - sh if t rectangular signal.....A- 16

A. 19111his Is the DWT of' two periods of the I - shift rectangular signal.....A-I 76

A.21.Trhis is the DWT of two periods of the 2 - shi'ft rectangular signal A-17

A .22.This Is the DWTF of two p~eriod of the 3 - -shift rectanguilar signial......A- 17

A.23.Tbis Is the DW'l' of two periods of the 4 - shi'ft rectangular signal.....A-I

Xx.

List of Tables

Tabl e Page

2.1. FDF1 vs LMS Real Multiplies 2-18

2.2. FDF2 vs LMIS Real Multiplies. 2-25

:3.1. \VIDF1 vs FDF1 Real Multiplies. 3-10

:3.2. NVDF2 vs FDF2 Real Multiplies 3-19

4. 1. Verification Test coefficients 4-5

4.2. Verification Test WDF1 filter settings. 4-5

4.3. NVDFI Verification Test Experiment:4 Results. 4-5

4.4. WVDF2 Verificatioat Test Experimental Results 4-12

41.5. Forwvardl Modelling Test:Plant, tap values for Case I and Case 2. 4-22

5.1. Signal Test 1: 1 - .shi'f I input filter settings. 4

.5.2. Signal Test. 1: :3 - sh?'ft input filter settings. 5-7

5.3. Signal Test 1: 4 - shift filter settings. 5-10

53.4. Signal Test 1:Error signal power for the last 96 sampe jC. 5-13

J).Signal Test 1:Number of weight updates t~o conv7erge 5-14

-5.6. Signal Test. 2: 0 - shift1. fil ter~ settings 5-14

-5.7. Sinal 'Test. 2: 3 - A , tfi c settings 5- 18
5.8. Signal Tes t 2: 4 - sk h1. flesetn................5-21

5.9. Signal Tfest 2:Error signal pow~er for the last 96 samples. 5-25

.5.10. Signal Test 2: iiNumber of weight updates to converg'.. 5-28

5. 11. Signal Test. 3: 4 - shift filter settings 5-30

5.12. Signal Tecst 3:1Frror signal power for the last 96 samples. 5-33

5. 1:3. Signal Test. .3: Number of weight. updates to converge. 5-34

xvi

Table Page

5.14. Signal Test 4:-0 - shift filter settings 5-35

5.15. Signal Test ,1: 2 - shift input filter settings 5-39

5.16. Signal Test 4: 4 - shift filter settings 5-42

5.17. Signal Test 4:Error signal power for the last 96 sampies 5-45

5.18. Signal 'Test 4: Number of weight updates to converge 5-54

5.19. Processing 'rime: Time required to process 1000 data samples. F-, TDF N
indicates number of taps, N indicates blocksize otherwise 5-55

5.20. Time required to perform a 16-point transform 5-55

6.1. Subjective Ranking for Noiseless/Noisy Input. 6-4

Al"I'T/GEEN G/911)*i-5

A bsh-OaC t

Two Walshi-domain dvadic convolutilon *pti'efilters arc dcx eloped using a clii -

lar convolution frcqucncv-domain filter (MV, 'he Fast Lf\IS adaptive filt-er (FI)F2):

WVDF I and \VDF2 respect ively.

General t heorv oft time-domain adlaptixk!.,- s and a theoret ical anal-sis oft the FLP].

FDF2. WVDFI. and \VDF2 filters are presente \VDFI and \VDF2 software Implenita-

tionls are shlown to be ei ror free. A tinic-doma! '. ei (TIV) and it FDF.' fi equenwv-doniaiii

filter (17DF) arc imp~lemientedl for C-3clriSOII N., qv. Il, \VDP WVIN 2. PD F. and F)F'

filt cIs a i tes'ted lusing tn il-shifted "ilisoidail Ild I ect allg~ ,, ar noisyv and iioiscle'sig'

WDF I and \\ DF92 i shwn to cofl\ errs faste" and Prodluce less ero fiitc ing dibcolit.7n I
noUs sifials. relative t-o the TDF and FDF Jperforindnicc. WLJFI and WDF2 are sho vn to

convei ge slowerI anld Jn OdlUce more ci ror fllteringoijitiu iiIIgnals. relative to TrDF and

FDF performance. \V)F1 Ib ishown tu performi bett. a foi oies Ignai.,. relative to WI')

pc: foi niance. \VDF2 Is shown to perform bet tecr for iiois. ,,ignaLs. reilt I\ c to \VDFI pci foi -

mance. l)F I and \\"])F*- fil teiilig)ci forinance %\ as shox ii to ()(li awi, \ Ii hincie(d,,iii0 t Illic0 0

shift. A\ processing speed comp~arison showed \%DFI1 to be fasifr I han lie TDF'. FDF. and

\VDF2 filters.

N\ liI

A WXLSH-DOMAIN ADAPTIVE FILTER

I. Irntroducti.on

1.1 Back- und

The clevedopmewi of space-ba(vd edaptive signal p~rocessors is anl dive ueca of rese.-rch

t hat has immediate military potentijal. Ini (IC\eloping space-basedl syst Los, S .stcrn rousto1ess
is it desirable Clualit). Adaptive s~b stems exhibit that quality [11]. Thierefore. -anl adaptive
system that continually seeks thle optiluun, within anl allowed class of possibilities, using anl

oi deily search p' ocess. Wouldl gi.- >e 51)ior perfoinmance compared wvith a system of fixed

diesign" [9:5]. Rleal-, inie signal pi UC(,.,ing rccjuires tha(t thle search process lbe conduct ed using

a minimum of t ime. N% lich is b fui exampl1)e. freciuen cy-clom ai adlaptivye sig'ial processors

are more commonly used than time-domain p~rocessors. Speed in this case is costl because

hardware req~uired to implemnt the Fast Fomirici. Transform (FF1') is sophisticated and

eXpl~elsix . Iusmng" ot het t ar-401-m1 dom11ains could possibly afford a haid(lxare savings and

I etain or su 51rpass thle Jprocesbi!,, spe of f'i 1rvquenc -(ojnain pilrocessi ng. '! !J i esis looks at

t-he del(lop~ment of' a \ValslI-d(,iiain adapiive lit(tor.

1.1.1 Thc WIaIJI-Daflinlif. Signal 1)r'jess.iiq; of stochiastic signals can be accom-

plished i a variety of doini s. dhe inost. continon bcirig O ine anid frequency. There are

lbasic(Ill 'AC wasuns i01 choosing one pi ocessing doiiiain ver.~us aniot her. F;, 5t . a 0onp~ut a-

I ional ad\ uomag iia be0 a(Ilivx 0(. Foi exampile. tilie SiiI.Ipicit\ achieivedl ill p)01fot iing hol

convolution A! two disc: et ol ,amiplcdl data sets with the I 'as Fout iei Ti alisfltn (1-1T") xci -

sus J0l fo: ining tilie colikollit ion sui.a [10d. IC seecojid. iiloriiathin of iterestnm Iid\ melore

\ iWe in one0 dolia~;', I hail allot hl 1 101. Frcquenmu (list Iibut ion i leIai l\ i ndi(at d in t he

frequnency-domnain. Nvh!. amiht ude cliarated st ich are clead il~ndicat ed ira thle timin-domainl.

Walsh-domain pi)o(0.ming! comeid (Lthe represent at ion of a signil as a sum of xvegi 0(1.

bi polaia- pulse waveformis. In the \Vash-domai n. (onlt ins and discrete lime sig nalIs aje

relprebentocl in terms of &.n 01t ionormnal set or b~asis functions consisting of xx ax foinis withl

d Riset A1 amIiiltude \alue, JJ.1 I ; IS] Wash hin tions alw defined oxe a finite KAMM ~iera.

1-1I

which is usbually norniali zed to one, and by anl orderig numbei n [1 :9- 101 N% Itich IsJ bcifies t I I

number of times the function passesS thru zero over the time intc-rxAl; ieferied to (is N~LqacnU(!

[1:15].

The Discrete Walsh Transform (DWVT) of a discretely sampled continuous time signal

is accomplished generally in the same manner as the Discrete Foui icr rr~ansforni (DPI'). rhe

IN-point DWT transform pair [1:501 is as follows:

N-1
.V,= 1 /IN E :v,~ IVAL(n . i) (1.1)

1=0

and
S-I

=, X, 7 I VA L(n.,) (1.2)

figure 1. 1 showvs the N = S series Dis~r Ic A' 'Al functions. The DNYT spe(ti1 alcomp)onenits

are rclpreseited by the X, t erms a nd ni i: thA orderi ng n umilber. The da ta sequiien cc is init Ica ted

by x,. whei e i is the discrete time index. and A" represents the number of data \aiues beinig

transformed.

Thie kernel of* thle D)WT sum. HiAL~i.) is I ibclpenX no, upon t hie values of ni and 1.

Equations, 1.1 and 1.2 show that the DWVT lprodliReS its) owi, inverse. .Just as, in thle ca.,e of

thle 1)FT. a ki'oriti is exist to produice a fast ci t ransfoli in the Fast Walsh Transfom i (FWT1

The D\\I Shiold l) Con)sidered for t inie- limtited wvavefo. ;-. be a use o itis 15loS~il

for the powem s pect ill to l)C sepliency limlited alt hough tht- (orinSpoiidiiig t iic fuict ionis i('

time limit ed' [1:10:3. for a i -limited wa~ eforin. the 1)WT scqueiicv spea ra has it finite

numbl. or t e; ins while thle 1) T would generate anl infinite frvquencQ spevira 11:10:31 such

hat . inl genieral. "a (ouitiniuouis 1p of waveormi la' uts iii g thle D) 1 andl a dkima timmui

ypv of waveloruii favouirs using the(DWI"' [1:1:321.

In t erins of ain inijleiiiat ion cinpaiisom with the I) F. thle l)\.i ini Iuit sintin

an1d f1~t ei be a use (lie DWT t iansforunat iou inati ix is (oinpo)0e] of i eal valules (± I) v. li lieh

o i Ia 'isloi iiiakt~oi ima trix is 'otil l)5C of coil)p~lx Ma .e, [1 51j. \ Iso. (te DW'l' requires

no mnuIt ilicatiori opet at ions because thle t ra uformn mat rix \ a! es are(±1I. thtus ied ucilig thli

mu ltlio~A'in oper-ations to siminply adiditlion.

.1 tWAL(O, i)

,' WAL(1, i)

1 17 AL(2. i)

o l -- - ---T- - --

II IV AL(3, i)

I I I

1 4-- o-------

-I I ,

t7 >I I

-I & --- ---.J --- .J i ' I IV A L (4 i)

--- ---

o - i 2 ---- i

'~~~ ~~ , ,. V.4 ,L(7. i)

Discrete Time Index.

Figure I.1] i. e Wals Functions for INl 8. i1 sequency Order.

1-3

Adaptive

Algorithm

Figure 1.2. Adaptive Filter

1.1.2 Adaptive Filters. The adaptive filter is a signal processor that possesses self-

adjust1ing capability and is time varying [3:2-141]. The most common form of adaptive filter

uses a closedI-lool) design (See Figure 1.2). The filter processes the Input.x, to yield an

ouitput !/, which is compared against a desired signal d~, yielding an erroi signal C,. The

cdesired signal d, sei-ves ats a "tr-aining signal' for the filter [9:18). Adaptive filters can be

impllelieiited a., time domain filters or as transform-based filters. w~hich are referred to a.5

lblock(processing adlaptive filters.

1.1.2.1 Tinu-NDoain Adaptive Fillters. The single-input tinle-clainl 121S
a(lalpti e filtei l0CC5501 4i ucture used in this thesis is referied to a.s an Adaptix e Trans"versal

Flter (\T)[9:161. A\s shown in Figure 1.3. the ATE is a standard Finite Imipulse Response

(FIR) digital filtei stiuct mc with tap weights which adapt with time l)Ci a predefinaed adap-

tat ioll algoriitlm. In this figuic , the ATF- has. (L~ + 1) t aps. Since thle filtei weights are

ad.1jil,)tcd 1using thle \Vidrow-lIloff LMIS algorit hiii h,(1) rel-presents the tal) value of the jt-11
weightf at tI'le i [9:100].

1. 1.2.2 B~lock- Proccss5i tg Adaptivc Filters. Since the DWT' is gener'ated in at

mannei ver sinillai to the l)FT, frequency-domnain block-processing filtei theory might

j)Iovide ins.ight Into how to develop a \Valsh-domiain block-processing Filter. This section

looks~ at at Frequency domnain block-p):ocessi zig filter that lerfornis circular convolutionl.

I -41

X, /1 (i

Figure 1 .3. Adaptive Transversal Filter

One signiificant difference between at thansforin-ba-sed adalpti~ (filter and the timec-

domain filters is that the data is proce.'scd in blocks [2:1.16] (Figurev 1 .). The cons!tant

N\ spec)ifies the block size. The N data p~oints of d, and .7, for thle kId b~llock are(transforined

using tihe Fast Voiniez Transfoi ni (EFT). The t ranisform component, of thle At-III iniput lock.

N,j k). are t hen mult-ij :ied with ile respect ive fi-equeiicy-doniainl fill weight. k. for

lie kt h block to prodt --e the illh block out put spectral comp~onents. Vh,(k). The)**(A-)

tOmieniiltS aic- thl liuiiIacted fiun thle coi respond~iilg lIlhL K of (lesiled sigilal 5jpect ial

comlIponlent s.)(. to p~rodluce the erroi coilI) oii(1 .t S. I;,, (k~). ''e(F_,(k) vaI ies are(used it)

update the filltr weights. I, 11

In all cases. thle index ni indllCates the hpectral couiponent . k indi-ates the block Ieiflg

p~rocimmil. and i is thle discete-time index. Because the ITT of a dism-lt e-tiniv signial resiu

in coiuipex als.tile frequen v-domain nh bin 11,,(k) and ,(k) omonil are comiplex.

Vi *mike t iune-doinlainl adapt ive filteis -xhich ulpd.ate' the weigla t t chI i. Wink(K rotissing

filters (BPF) upd)(ate once pei block. Thel(coinplex LNIS algorit lini is t he most popuilai

weight upd)(at e algori thim [2:1.17].

\lging" 1)WT t heot v and ii ansforni-bhased adapt i'e filt ei thieoi 3 would enahle the

(ele(Iopiiuemat of ; obiist sel-f dlesigning hignal lprocosorb -ahicli pos'sess minllia I iciitt at 011lioui.al

requiiremnilts sulita ble for alplficat ions u'hui I Ii nti a' ailable pom ei anid spa C. parti maQl

sjpace-lbasvd sigiial p~rocessing [I I].

x(k) N-Point - N-Poinlt (I-
:FFT E(k

x Y (k)

LN- Point

(1(k)

Figure I.]- A\ Ireqtienry. Ioluain A\daptiv F ilte*r

1 -.6

1.3 Research Objective

The primary objective of this thesis is to develop working frequency-domain and W\;alsh-
domain block-processing adaptive filters in software and categorize their performance in
terms of convergence speed, output error, and processing speed.

1.4 Review of Literature

This section iresents a brief discussion of the pu),lished research that pertains to the
subject of this thesis. Two research efforts were fount in the literature pertaining to NValsh-
domain adaptive filters. The first concerned the hal dwaie implementation of a Walsh-domain

adaptive filter. The second presented an Adapt,,e \\:alsh equalisei. The following sections
address each of the two research efforts.

1.11.1 Walsh-Domain Adaptive Filler. Literature research revealed work done in
Walsh-domain adaptive filtering done by American Electronic Laboratories [8]. The Walsh
Adaptive Filter developed by American Electronics Laboratories was designed to adaptively

filter pulsed waveforms of varying widths, frequency, and time of arrival. The adaptive nature
of the filter, however, was in relation to the threshold used and was not LMS in nature. This
was not a true Walsh-domain adaptive filter since the emphasis was on threshold but is wol th

mentioning since, as far as could be determined, it. is tie onl) combined implementation of

Walsh Transform and adaptive filtering theory.

1.4.2 Adaptive Walsh Equaliser. The Adaptive Valsh Equaliser (AWVE) [4] is a
continuous-time filter that performs linear convolution using a weighted sum of ,I -ar-

able coefficient continuous-time Walsh functions. Appl3 ing the supetpos;fIon pilicille, the

continuous-time input signal is conolved with each of the oi thogonal impulse Iespon.e \Valbh

components and the individual responses ai e surnmed to Ilioduce the output., hich is coin-

pared to a desired signal. The impulse iesponsc component weights aie adapatively adjusted
to minimize the output, error. This filtem operates in the time-domain, while this thesis iII-

vestigates operation in the sequency-domain.

1.5 Assurmptions

The Walsh-domain and frequency-domain filters will be implemented in softwac and

it is assumed that noise contributed by round-off errors and quantization effects due to

1-7

finite word lengths is insignificant. Eriois of this tN PC ate generally ign-oied since theni noise

contrib~utions canl be minimized wvithI FIR1 filter imp~lementations [12:7].

1. 6 Scope-

The research wvil be limlied to the development of frequency-dom-ain and] \Vals -

dom-ain lani ive fillit s usig the Fast J2IS and Circular Convolution freq uencvy-do, aiin

adaptive filter structures [2:146-1571. A lperformance comlparison of the filters will be made

with a. time-domain LIMS adlaptive filter based onl conveigence speed, error performance, and

processing bpeed. The signal set,, used are time-shifted noisy an(] noiseless sinusoidal and

rectangular signals.

1.7 Ilai-dia e l?equt rein ents

This the-is requires a PC/AT-class comp~uter with at least a 512K Ram Disk, 6401K of

base memory, and a single floppy (drive. No additional hardware is requniredi.

1.8 Sofftware Requirements

All software programs developed in this thesis were implemented using Tuib1) Pascal

version 6.0.

1.9 Approach? and Pi'E(fl/na/jot?

The ap)proach used in this, research includes a literatum e search, soI'vd:e imipleinenta-

tionl of the \Vaish and frequency-domiain adaptive filters,,software testing. and at 1 erfoi nance

comparison of the filters. The remiainig chapters are structured as 'Ollows,:

" Chapter 11 presents a thelwo ical inalysis of D~iscrete Walsh Ti amsforin tlieoi.\ anid the

frequency-domai n filters.

" Chla pter I pri-'eiits 5 to Wi alsh-(lomini adalti xe filteis dleveloped b)\ Cx ten ditig the

frequencyv-domiain filter designs into the W~alsh-domlainl.

* Chapter IV discuIsses the Wal.sh-domain adlap~tive fil implementat-ions ini soft ware

and thle tests used to verify itgiy

" Chapter V discusses the performance comnparison results.

* Cha pter VI pi esetts thle coticlutsions and recommiendations.

1.10 Original Rcscarch Contributions5

To the author's knowledge, the unique and significant contributions presentedl in this

research include:

1. Merging of Discrete Walsh Transform (DWVT) theory and adaptiv'e filterl theory.

2. An extension of a frequency-domnain circular convolution filter design to it W'alsh-

domain dlyadic Convolution filtei (](-sign, \Valsh-doinain Filter I (WNDFI). that provide."

a p~rocessing speed and discontinuous input signal filtering improvement over the Fast

LMS and time-domain LMS filters.

:3. Development of a new transform-doinain LINIS algorithin. Walsh Tranfom in LMIS algo-

rithmr I (NNLNIS1), whlichj permlits use of the DWT*, in a freqluency-domain filter that

1)erformns circular convol utioni.

4. A nei\ \Valshi-domain fllt,,r design. Walsh-domain Filter 2 (WDr 2), for a WValsh-domain

b~lock processing filter that uses a modified form of the '-overlap-save" method, has

improved noisy input error perforimance over the NVDFI filter, and provides piocessing

speced and dliscontinuons input signal filtering improvement o~ em the Fabt LMIS filtej.

HI. Background

This chap~ter p~resents the WValsh-domai and adaptive filter theory used in the dlevel-

op~menlt of a WValshi-domnain adaptive filter . Adaptive filter theory is p~resented III two areas:

time-(lomain adaptive filters an(l block processing adlaptive filteis. The1(block lpiocessii.p

adlaptive filter discussion piesents the Fast I2\S frequency-doinl liiei anu a I tjicid (AuI-

x'olution frequency-domain filtet . Both filters are(used in Chapter 3 as temnplates iii the

designl of a W-alsh-dom-ain filter.

2.1 14 a/sb-Dow ai Theoi'y.

Signal processingl' of!stochastic signals canl be accomplished iii a vti iety of doinains, the

most comml)DOI Usedl being time and fr-(equecy. There are bas.ically two reasons for choosing

one processing (domain versuis another. First. a, comlput~atitonal advantage may be achieved

[10]. One example is the simplicity achieved[in performing the convolution of two (liscietely

samlipled (data sets with the Fast, Foui iei Transform (FFT) veisus performinigtoic convolution

sumn. The second. information of interest may lbe more visilble in one dlomain than anothci

[10]. Power distrilbution is Clearly indicated Ii t-he frequency-domiai, whereas amplitude

characteristics arc, clearlY indicat-ed in the time-domainl.

2.1.1 Wahi 0I. uncIion.s. Walsh D~omaini processing, rejpresewis thle siginal as a sum of
veigl t ed. bipohi i pulse waxt efrins. Ili the Wa lsli -coi iii s n iiun and (lisci (c~~dI

are ili'Cseinted ill ternis of anl om tholii mal set of basi.s fln('t.lons (onsist i n of xx aveforins"

with discrete ± I amplitu~de value [1:17-181. Walsh funct ions are(defined over a finitc timei

inii-val. which Is uisually normal izedl to one. and by ani ordelig number n [1:9 -10]. The

ordem n Ill' llei Specifies the number of timnes the function p (hi tll iiZio ox ci (t(lnmC

nt erval . and is wfei red to as s qiu ncy 1:5.Discrete Walsh funl ioiis a i'e (let (1incid 1).

s'a niplill tilie con espomdillg continuious Walsh functioii at N\ cqua ll spaced poinits, oxwl t he

interval (0.1). Thle nui n1bel of samlples. ., must be a power of 2 [1:50]. For a seriesof N =2'

t-erms. the (iscrete Walsh functions canl be sp~ecified as 11:59]

P)- I

r =0

L =7 0. 1.2. 1

=0.1.2 ... ,- I (2.1)

2-I1

The indexes i, ni are exp~ressed in termis of their binary digits such that.

2. = (11, ?,)-1 . i. . i0)2

77 = (ni?, 71p I . . t 7 70)2 (2.2)

where the subscript 2 onl thle right side of the equalit-y in Equatioit 2.2 Indcicates thc inIary%

representation of' tl'e left side of the equality. The leftm-ost bit is the most significant. Ani
example IVAL(7?,) terin calculation and the first 8 discrete W~alsh functions are presented

In Section A.1.

2.1.2 Discrxc lValsh Tr-aniform. The Discrete Walsh Transform (DWT) of a dis-
cretely sampledl continuLous timle Signal is, acconmpli.ledl generally in the same mannter as the

Discrete Fourlit Transform (DPI). Thle discrete Walsh transform pait [1 :.50] is as follows:

= 1/ E X,1VAL(?i. 7) (2.3)

and

x= V ,, H7.A L(??. i) (2.4)
21=0

The DWT~ speCctral compontents anreplresent ed by the A'1 tertms and 71 is thle orderingo

nunibem. T1he data sequience is indicatted o~x Im,. where i Is h le discrete time index Millue N
repi esents tile mnnbei of dhaa values, being ti ansforitied. The A' in put dat a vaities being(

transformed (ire not issumed to be periodic. The kernel of the suni. II.L I.)s ± I
depending upon the values, of ni and -i (Equation 2.1). lBecaLISe the transform kernel is ± 1

tile l)'T cqilires no miultiplies wvhiile Ci\eel.thle DPI' requ iies N, 2 Oli lex miii I ipilie-.

Clearly, the D\VT ha, ai complutational adivantage over thle JF. As In tile case of' the DF'1.

Fast Waifsh Tipan..fkrni(F' algori thms exist [1:58S-741 [7]. Th'le transform Is li near [1:30]

so that if

V.-+A, (2.5)

and

Y1 n (2.6)

then

axr, + by, 4- .~aV,+ b); (2.7)

where aI and(b are r'eal constants and W/ represents the DWVT operator.

2.1.2.1 I'Walsh Mfalrixr. The DWT can also be relpr(:,,ented as a vector matrix

multiplication operation so that

X,= (I1/A,) \WNA'X (2.8)

where x Is the Nx I data sequence vector, X,, is the AT x I spectral compjonent vector, and

\Vv is the N x N Walsh matrix. The matrix NVN anld the input vector x are defint

IIWAL(0, 0) IIAL(0), 1) . .. I1"AL(0. AT - 1)

=V 14VAL(l. 0) 1tVAL(1. 1) . .. I' (IN-(2.9)

M/AL(N - 1.O) WA-.L(A7 - 1. 1) .. . IVAL(.-\ - I.N -1)

and

X = [XO X I.......N, i] (2.10)

The rows of NV,\ are the first A' Wkalsh functions, where the sequencv 0 function is the first.

r*ow. and the matrix is diagonally symmetric. The first N/2 coluimns are characterized by

tilie fact that . in nUmlbei ing the first ro\% 0. thei ec en and consccutive odd numbered rows

arie equal: foi example rowO= i owl and row2=i 0" :3. This chai acteiistic will be referred to

as 10ow svnieIII)~v.

The sionlificance of' the row .symmetry characteristic call be seen when tiansformlin~g

zero endl-lpacled seqiences. Ani N/2 zero endl-ladded Input data Xvectot pr1oduces a 'S)ect li)l

wvhere. Stai ting with thle 0 spectrum comlponcnt . the e~en nuilileied comiplonlents are. equal to

heliir consecuitive odd numbered Comonoients: 1,0r ex\ample N = X, and X 2 = X.3. Therefore.

he re~sult iiig slect rin1) is (omlpoient simn et iic. xa m ple Ii.ecWalshi Timaisfori us of zei

end-padded xvectors are presented in Section A.2.

2.1.2.2 Simeiruin Characiurishics. "An import ant feature of tile p~owver spec-

ruim usinig Walsh functions is that it is possible fot thle power spectritni11 to be seqiieii\

lIm ted aIt hough the corresp~ondi ng timne functions aie time Iimiit-ed" [1:1031. In comrpai i-

son, thle corresp~ondhing frequency spectrum foi tinic-lilited iavefornis cannot. be frequencQ

Ii it ed. The represenit at ion of a cont imnious '\ amefoiin %' it i Walsh funct ionus resul s in a

iiorce coimlex sp~ectrumn t hani t hat prod ucedl using Fon nclr anial> Sis [1:10:31. (oiimesck~. thle

2-3

represen ta tion of clisconti nuouv wax~eforms usbilf Rii liaas. eulsi nr ope

spectrum than that produced using W~alsh functions.

Simlb. rectangular and sinusoidal waveforims are examples of (liscontifluous anld coil-

tinuous waveform-s, resp~ectively. In the case of periodic signals, the DWIT of' (ie period

of thle signal produces a different. sequency spectrum than the DWVT of twvo periods. This

characteristic Is demionstrated in Section A.:3 for a simple sinusod andl rectanguilar signal.

The sumII of the sequency components squared equals thle input signal p)owVer.

2.1.3 Circular Thine .Shift. Effccts. Unlike the DFT, the DWT does not. possess5 a

circular shift property (1:51]. Given a, scquei~ce x, which prodluces a DFT Xk, thle clircularly

shifted sequence X,-m produces a DFT of -.7-p- (2,-k/]N))-, A- The spectrum of the circularly

shifted sequence retains the samne magnitude chiat cteristics as tme specti urn of the unshilfted

sequence but possesses a different phase chiaracteristic. TIherefore, the DFT is referred to

as a shift invariant transform. The shift variant nature of the DWT isdemonstrated ;n

Section A.3 for a simple sinusoid and rectangular signal.

2.1.J Convolution. The linear convolution of two dliscrete N point sequences x,1 and

y? in, the time dornain h. defined as

-X0

i=0

rihe on olut ion theorem for the Fourier Tramisfom m states that the convolution of two IN-

polint tinne seriesX., and y, canl be performed by inultip imig (hle Fourier Tran.foi ills of te to

series awlc taking the inveise transform of the j)ioduct. This results lin circulai (onvolut ion

due to the fact that the 1)FT assumnes tite sequences to be lpei iodic. Therefore it i.: iiecessa,(ry

to pa;d IeI(s'equences with IiN Zeros. tramisforin the 2NX-pjoi it series, multiply t lie 2N-pointl

DPI's of' thle two ,equnences. anmd Inverse t i a isfoli Hih result to perfoil iniieal (oivol t ionl

inl t lie t ine (lo011.1

In thle case of the l)WT. no reltilonship exsswith regard to performing linear time

clonmi nl coilu ttion. Thiis Is dlemonstrat ed by relplaci hg .X, and YIT-, in Equtation 2.11 with

their eqluivalient Iiiverse l)iscrete Walsh i alinsforil. PeifOlill Iii igbi subst it fi iongves, [1:991

-Z[Z \7F lLU"W .1)117 VuIVA.L(l. 7 - 1)] 2.2
1=0 ?;=() ~

NV-i N-i \-I
- Z E X,,)- 1[ii hA L(k, 1) 147V 'L(1.7T -01) (2.13)

71=0 1=0 =

The bracketed s5um tlerm represents the convolution of !'e discrete WValsh functions, and

demonstrates the fact that linear tim-e convolution is noi achieved. WVhat is achieved, i

reierred to as dyadic convolution.

The W-alsh addition theorem [1:53] states the following relationship

W+AL(n, i)WAL(m, i) = IVAL(n~&n. i) (2.14)

where indicates moclulo-2 addition for the binary representat -ri of n and mn. D)yadic

convolution is defined as [1:l0O)

:=O
= X*Yz(2. 15)

andl sulst Ituting the Discrete WValsh Transformn (D\V') exlpressioni for y~,into Eqtuation 2.1.5

p~rodluces 11:1001
A' I

=x, 7 V,~'1 1 V1AJ.(n. 7-:-1) (2.16)
7k =0

Applying I lie additi]on theoremi (Equat ion 2. 14 Jo Equation 2.16 produces [1:100]

N - I

1: 1 XYjVA L (1. -r) (2.17)
11=0

whiich est abi ishles th~e relationship

\\here W Is t he l)\T opoi atoi . In con pat ison . t his realtioishiip del (leonst I a tes that (distinict

sets of relationships exist. for the WValsh aiildFuirsiis Each establishes a form of

2----

convolution tlieOr\ with thle (IiffCrcincc being that the Fourier veision ut.ilizes ai itlinetic

addition for the iecursive time shift andl the Walsh version utiiizes inodlo-2 addition.

Dyadlic convolutioni is similar to circular convolution in that therc aire A, product, term",

associated with the iesult iat each 7 Shift \% hen convolving two ,V point sequeitCes. Linear

convolution produces 7- + I product. termis for each 7 shift. Ant examplle is presented In

Section A.2 that, demonstrates the relationbhil) stated in Ecination 2.1$.

2.1.5 C'onrclalion. Discrete aultocorrielationl In real time Is defined by [1:100]

I?. = 1/A E Xi.7 (2.19
2=O

wvhere =0, 1. 2 .. and mi<N. The constan~t mn represents the total correlation lag.

Discrete atocorrelation mII dyvadic time is defined by 11:100]

R,= 1IN E x~xii (2.20)
1=0

Since modulo-2 adldit ion mnd subtiaction aie idenitical operations., dyadic con'olution and

correlation p~roduce thle same result [1:101]. Correlation of xr, and y, can be accompllishied

by multipjliimg the xi, sequence 1)11 con'ugate and the ySequenice l)F'T. Th~is is shlown bv

a ppl\ III.g thle con volu lot) Io heorem. for tlie oncrseries aiid t he rel at ionlbulp

~, (2.21)

where .Fis the(DFT olCi ator. The inveis Sc lFT produces the cross-correlation of x', and y,

NO Such relat ionshuip e'xis! r)XXI since I lie l)W'l romponients are rca IM

Ani adlapt Ive filter i.- at signal lpi'(ces50r that possesses5 self adjust ing cap, bilit\ anidi

time varvingy 13:2-11]. '1'lic filter is conitinually modifying it.s (lirreli state It. respoiise to

iii put anid ou1 put Si gnalIs 1:3:2-11I]. Tliw most conmimon formi of adaptive filter ti,-ed]in signal

p~i Ocessi ng' Is thle (losed- loop. Which is illiustiated in Figure 2.1 . This filt ei p1 oce.,scs it(inlput
. to vield an titpilt y x% " icli is cornpa ied aga insl a desired signal d ~ i nc o iia

(.The dlesi red signal. .1 serves as at -Iraiy %,!/,,7r' foi the fill er [9:181. .All I hivec \a i iables

2-6(

Algorithm

Figure 2.1. Adaptive Filter B~lock Diagram

represent discrete values and the subscript i* represents the dliscrete time indlex. Acdaptixe

ilters can be imp~lemented as time domain ilters 01 as tiansfoi'm b~asedl filfers. also referred

to as block processing ad~aptive filters.

2.2.1 Timc-doinainl Adaptive Filters. The single-input thiae-domain LMIS adaptive

fill, processor structiure used iii this thesis is, iefci red to as anl Adaptive Trai.!s,-erbal Filter

[f 'I s shown in Figure 2.2. the Auzat .ve Transversal Filter Is essentilv a Finite Iimplulse
I) ,,pollse (Fl H) dligitIal fillt it~ih Aklapt ive weights that are representled bluch thatt. the jth

ap at I line I Is h,(i), where j -=0. 1. L. Assuming a causal filter. the '.ilteci size is L + 1.

\\eighit updatc at time i is most comimonily p~erformned using the \\'id'ow-- off LNMS algorithm11

(9:1001. Filter wvei~ht vilues ar-C coilectively represented as a wecighit i-ctoi which Is defined

as follows:

h (l) = [Iho(l) hi(i) ... h/4*]' (2.22)

The filtei OutIput at tinie I is 'Pioducel rroii the lilica Icomb)Iinat ion of pi'odu(ts formed by

nII tilt i plying IliI(filter weights, \%ithI thl coii esIpoidi (ll d ecd iplwi signlal \ aluie ., spc(ifiedl

bY [9:171

1=0

- x'(~h~i)(2.23)

2-.7

110() h~i) .. I L (i)

Figure 2.2. Adaptive Transversal Filter

where

X(Zi) = [Xi - i-LIT (2.24)

Thie error signal is specified by [9:19]

ei=d,-z

= d,- x(hi)(2.25)

Asa measure of optima1 pci formanice. the LMS adaptive filter seeks to muiniizc the

mecan squared error E[cfl; with the ideal case typically being E[(2] = 0 [3:2-16]. The mecan

sqIuaredl error is defined as follows [3:2-16]:

E[c:2, = Id,' , I(?().T)l(2dxihi)

= E[d,2] + E [11 7 (Efx(i)xT(,)]J 7 h(i) - 2E~d~x T(I)]EJ[h(I)]

= L[dj + hITU?)E[X(i,)X7'i)Ihl(i) - 211d~x7'(i)]h(i) (2.26)

There are two key assitiltions miade- in I he derivation of Equat ion 2.26. First, in

piogiessing fromn the first. to the second line. thie weight %vect~oi and the inpJut. signal vectoi
are alssumned uncorrelated. The seccond assumiption is that the weight %vectoi (onvciges to a

solut ion. When thc weight vector converges- E[h(i + 1) - 11(0)1 ccquals t lie zero vector and the
weighlt vector canl be hevated as a constant. This leads to the fina! foii o~f E~quatioin 2.26.

2-S

which is [9:20]

EC]= E[d,2 A ±I hn - 2P 7 hl (2.27)

where R is the autocorrelation matrix and is defined as 13:2-171

&(1) (b , (0) ... 6 (1 - L)

Rt = E[x(i).-2 (i)] Ox &(2) opxx(- 1) ... 0-,x(2 - L) (2.28)

and 6,~(n) =E[xjx,+,,]. P is the cross correlation vector

Od.x (0)

P = E[dix(i)] = d :d - 1). (2.29)

dx (-L)

where 6d,-(7) = E~d1.r1+,,. Under the assumption that the input signal and desired signal

are stationar-.- I? and P are constant and as- SuIch iequIrIIe no0 time Sull)S'Cr'il)t.

Equat ion 2.27 is, referred to as the performance equation or mecan-square error(MISE)

equation for thie LMIS filter. Equation 2.27 characterizes a pcrforinance surface which the

filtei searches to find the global minimum ich is 'auaranteed to exist by the quadratic

nature of thle equation. The weight vectoi that satisfies the global inimirum is referred to ais

l .Sol' i ng for 11p reqjuires taking the gradlient of E~c2,1. and setting the gi ddieilt equal to

the zero vector. The gradient is b~eing taken \\it h iespect to the weight vcctoi Wi. D~efininig

tile ,radienlt Vector* ,,. as [9:2-181

=7,; [U lazv0 UF/aw1 ... C FI0?1 LJ (2.30)

2-9)

where F represents a function of w and V,, the gradient operator. Applying the V,, opecrator

to Equation 2.27 and solving for the minimum produces [9:21]:

0 = V,,.E[d 1] + V h1T Rh - 7,2~

= 0 + V/(h 7)(Rh) - V.2p~h

=-2Rh -2P (2.31)

where the left side of the equality is the zero vector. Evaluating Equation 2.31 for 11 yields

h1P such that [9:22]

1"t= I-IP(2.32)

An impllortant footnote to this result is that this assumecs R to be Invertible [9:2-IS1. Suibsti-

t uting Equation 2.32 into Equation 2.31 for hi yields the minimumn mean-square error. which

is specified as [9:221

?ffl=E[d] 21- pT R-p (2.33)

Equations 2.32 and 2.33 clearly show that the optimum filter solution and the optimumn

MISE p~erformnance depends on the autocorrelation and crobscorrelation statistics. For an
input signal that is statistically wide sens5e stationarx. the Rt matrix can lbe evaluated and will
be composed of constants. Evaluation of' the P vector is arcomplishiec b\ cross correlating

x(l) and d,. The p~erformance surface defined by Eqiuation 2.27 as, mentioned earlier is

quadra.ic in natunre.

The gradient at ainy point on the p~erformance surface corresp~onds proportionately to
the surface blope. The rate with which thle weight vector converges also is p~rop~ortional t~o

the gradient and therefore the surface slope.

A lpoplulai measure of adaptive filter performance is the karning Cllrv(whIt1 ia~asures

the MJSE as a function of time 110]. Generally. E[(.2] is estimnatedl by ensemble a.. 1 aging

versus 1*over a nunmber of individual runis of the input. The minimum NISE or 41mnoccurs

when the filter- taps haive reach(!(thiei! op~tinmum solution as, defined in Equation 2.32. I11

most cases. an exact mnatch with tlic (desired signal is not achieved clue to .-daptation noise

in the filter tap upd(ate and noise :in the filter Input .r, [10].

The filter weight: for each tap lposition are updated uising the LNIS algorithmn:

h(I 1- I h l(i) + 21tc,x(li) (2.:34)

2-10

after each time Instant. based upon thle error difteretite c, letween t he- filter output Y, and

the desired signal d,. The constant it is, referred to a,, thle gail Lon1stantl anid is used to .Ajtust

it(lalptation sp~eedl andl control thle stability of adlaptation [.9:1OO]. The filter searches thke

performance sin face for the glob~al 11ini1m1u1 using- thle LN\18 al-oz ithln. As the Input data

is proces~sed. the LNIS algo0ritmni uses a gradient estimate dlerived from the instantaneous

error to search the Perforniance Surface [9:99- 100]. As stated inl Equation 2.3-4. the next

weit v-ector. h(i 1 Il. iscalculated by adjusting the I)revlii weight v-ector bv t lie :scaled

p~rodluct of tile instantaneous error and inp~ut vector. Inl the case of nonstationary signals, if
the statistics vary slowy. thc gaitn constant it canl be increased to allow the filter to track

tlie 11nittionarit at the expw of imcreabed adaptation noise. l'vi ral)idlx chaniging iriliit

signal statistics. the filter will not converge to ant optinmum weight solution [:3:2-211.

2.2.2 Block Pi'occrizz ;ltaptir. Filkris. This section presents thle Fast L2N1S adlaptive

filter and a circular convolution frequenc% -domain filter. For each filter. the presentation is

as follows:

1. 1'ine-domnain input vector defiitionl.

2. Frequency-domain inllut.

:3. Output (ialculat ionl.

-1. Frequencv-domuain) weightl upd(ate.

5). IiiiiC-(loIaiii repremsentat ion.

6. Optimum weight vector.

7.Computational requirement s inl terms of mult iplicat ions.

2.2.2. 1 (irula-(o rllo .1odd One significanit difference inl the menc*

tat mon of a ti ansfolil inbased adapt i'e filter versus a t imne-hmnain filltr Is that tille dat a Is

p~rocessedl iii blocks !2:1161(;. A freulenlc% (1orurain1 adapt i'. filter t hmi perforims ci(i la' Conl

ohlu ton is d1epicted inl Figu1re 2.3 1[2:1-I7"1 andl %ill be referred to In il(lie enainidei of t his

hiesis as Frequency dom. 'A Filter I (F lI). The b10 k, processiing nat lre of tisl filter is%

reflected inl Figuire 2.3 unljg theiw notationi xf I:). (k). and % (k). which represent thektah block

ipt vector (desired vector. aiid out put vectorreptily

2 11

X o (k) Yo (k)

Ho(k)

x(k) N-Poillt -V Y 7 N-Po;llt y(k)
> FFT Eo(k) T FFT-

N I(k) Y N-I(k)

HN-I(k)

EN-I(k)
+

Do(k v-,(k)

NT-Poillt
FF T

d(k)

"i"Llre 2.3. Frequency-domain Adaptive Filter

2-12

FDFJ Time-domain Input Vcctor Dcfinilion. The first step in presenting

the frequency-domain equations is to define the filter input vectors. Letting x, represent

the input sequence, the N input sequence xalues which define the kth input block can be

represented by XkN+,, where i = 0,1,. N - 1. Using this notation, the N-point kth block

input vector is defined

x(k) "-[XkN X'kN+Nl] T (2.35)

Applying the same notation to the desired time-domain sequence, the associated kth block

desired vector is represented as

d(k) = [dkN ... dkN+All T (2.36)

FDFI Frequency-domain Input. The kth block input vector transform

components define the diagonal components of the kth block input FFT matrix X(k) [2:148]:

X(k) = diag{.F{[X(kN) ... X(kN+N-)I]"}}

Xo(k) 0

X(k) (2.37)

0 XN- ,(k)

where F represents the forward FFT operator.

The kth block desired vector transform components define the kth block frequency-

domain desired vector D(k), defined by

D(k) = F{[d(kW ... (/(k., +A,-, "1) (2.38)

and

D,(k)

D(k) = (k) (2.39)

DA,_I(k)

2-13

FDF1 Output Calculation. The transform components of the kth input

block, X,(k), are multiplied with the respective kth block frequency-domain filter weights,

Hn(k), to produce the kth block output spectral components, Y(k) [2:148-1,191:

Y(k) = X(k)H(k) (2.40)

where

H(k) = [Ho(k) H(k) ... H,,,-I(k)] T (2.41)

Taking the inverse FFT of Y(k) produces the kth block output vector. Representing the

N output sequence values as Yk,\+,, where i = 0. 1, the kth block time-domain

out)ut block vector is defined

Y(k) = [Y(kN),.-, Y(kN+V-1)] T (2.42)

and

y(k) = .{-'{X(k)H(k)} (2.43)

The 17-- operator used in Equation 2.43 is the inverse FFT operator.

FDFI Frequenzcy-domain M4'eight Updale. Analogous to the time-domain

LMS filter weight update, the output spectral components.) ,(k). aie subtracted from

the corresponding desired signal spectral components. D,,(k). to produce the kth block

frequency-domair error components, E,,(k) [2:149]:

E(k) = D(k) - Y(k) (2.44)

The EL,,(k) values are used to update the frequency-domain filter weights, JI,(')

l1(k + 1) = 11(k) + IX(k)E(k)

= -(-) + lt[X'(k)D(k) - X'(k)X(k)H(k)]

=-1(k) + IIVFIR) (2.45)

2-14

where it is again the convergence constant, X*(k) is the complex conjugate of X(k), and

VFl(k) represents the frequency-domain gradient vector for FDF1 [2:149]. VFl(k) is defined

VFIo(k) 1 Xj(k)[Do(k) - Xo(k)Ho(k)]

VF-(k) - r, (k) . (k)[D,(k) - X, (k)H(k)] (2.46)

VFI_, (k) Xkl(k)[Du_,(,) - XN-l(k)HN-(k)]

Equation 2.45 shows that the FDF1 Weight update is accomplished once per block as opposed

to each discrete time, i, increment.

For the previous discussion, in all cases, the index ni indicates the spectral component,

k indicates the block being processed, and i is the discrete time index. Also, because the

FFT of a discrete time signal results in complex values, the frequency-domain components

Hn(k), En(k), X,,(k), D,,(k), and ',(k) are generally complex.

For each block of input data processed, the filter attempts to minimize the MSE be-

tween the desired spectral components and the input spectral components. This filter re-

quires stationary inputs for the weights to converge.

FDF1 Tim c-domain Represcntation. The equivalent time-domain repre-

sentation of Equation 2.45 is as follows [2:149]:

h(k + 1) = h(k) + y4xT'(k)d(k) - xrx(k)h(k)] (2.47)

where

h(k) = -'l() (2.48)

with the vector format specified as

h(k) = [ho(k) hi(k) ... hNI(k)]T (2.49)

The symbol X(k) represents a circulant matrix [2:1,9] given by

X(k) = :'-'X(k)F (2.50)

2-15

and

xo(k) X(J\Ti)(k) .. x 1(k)

(k x I (k) ~) .. 2k (2.51)

XI(k) XN- 2 (k)...... 0 (k)

Tile first column of X(k) is the input vector x(k) since x(k) is the inverse FFT of the diagonal

elements of X(k). By expressing the ith row of y(k) as x,'(k), Equation 2.47 canl be re\N iitten-

as
N-1

h(k + 1) = h(k) + it E [d(k)xidk) - yjk)x,(k)] (2.52)

with y,(k) representing the ith component, where i = 0. .. .N - 1, of the kth block outp)ut

vector (Equation 2.43). The output vector y(k) contains the N output values for thle kth

output block of the filter. FDF1 output values for the kth block are calculated in thle time-

domain by performing the circular convolution of h(k) and x(k). Using the circulant matrix,

the kth block output vector is defined [2:149]

y(k) = X(k)hi(k) (2.53)

Substituting c,(k) = d,(k) - y,(k). where d1(k) represents thle All component of d(k)

(Equation 2.36), into Equation 2.52 p~rodluces

N-1

h(k + 1) = li(k) + it E c,(I:)x,(k) (2. 54)
i=O

where x,(k) once again rep~resents the ith row of X(k). Equation 2.54 reveals a distinct

departure from the standaii LMS algorithm relating to thle gradient estimate. In this" case,

evenl though weight update occurs only once per block. thle giadlient estlim-te i.s calculatedl

as at recursive sum over the input. b~lock.

EDEI Optnn W4eight Vlector. The first step in deriving anl FDF1 op-

timal time-domnain weight vector expression is the dei ixat ion of anl equi~ aleiit frequency

domain expiession. The optimum frequlenFcy-domain weight vector minimizes [2:1501

=E[(D(k) - Y(k))*(D(k) - Y(k))

2-16

-E[D-(k)D(k)] - R-d H xRd + 1-PRX H (.5

where

Rxd = E[X*(k)D(k)] (2.56)

and

K,= E[X*(k)X(k)] (2.57)

Since d and x are stationary, Rx., is a diagonal matrix and the nth diagonal element is given
lby E[X'(k)X,(k)]. The 77th element of Rxd is E[X,*(k)D,,(k)] [2:1501. Taking the gradient

of Equation 2.55 with respect to H, setting the result equal to the zero vector, and solvinga

for H0 p, produces [2:1501.
H0 -R;Rd (2.58)

The optimum time-domain wveight vector is calculated by taking the inverse EFT of

Equation 2.58 whichi produces the optimum time-domain weight vector for a circularly con-

volving filter 12:1501:

1" = r- rx (2.59)

where

rxa. = F~ xY(2.60)

and

I~d= Y- Rxdy (2.61)

Trhe matrix rx, is a circulant miatrix, because R.~ is a diagonal matrix [2:1501. Characteris-

tically, the first iowv of r,, contains lags zero through A' - I of thle circular autocorrclat ion1

functioni of the input x [2:150]. Using the linear autocorrelationi function 6(li). the circular

autocorrelation functilon at lag i/. (5,(i), canl be expressed as (2:1.50]

N -i
0.(i+ 6 ()±~~(i - JN) (2.62)

A' N'

Simillarly, the circulai cross-cot relation of .r and d generates telinis that conlil ise thlce leints

of the vctor rxd (2:1.50].

FDEJ Conip ulallotia (ReI~quiremnents. A comnputational reduct ion is ach ievedl

with the FDF I filt.ei versus thc I inie-doinaini adaptive filter inl tcrms" of ult~ilhicatioii opera-

2-17

N FDFI Real Multiplies
LIMS Real Multiplies

4 1.375
8 0.875
16 0.531
32 0.313
64 0.180
256 0.0-56
1024 0.0171

Table 2. 1. FDF1 vs LIMS Real Mu tlti plies

tions required [2:1-171. The FDF1 filter uses three !\-point FFTb and 2A' complex multiplies

to calculate Ar-output points.

An N-point FFT can be accomplished using an N/2-point FFT and N/2 complex

multiplies [2:147]. Computationally, a A/2-point FET requires (NV/4)]og2(.N/2) - N/2 com-

plex multiplies so that a total of (N14)1log 2 (NI2) complex multiplies are performed in each

N-point FFT [2:14S]. Adding 2A1 complex multiplies to the complex multiplies associated

with three N-point FF'rs gives a total of (3N/4) log_2 (N/2) + 2N complex multiplies per N

outp~ut p)oint., prodlucedl. An N-tap tinie-domain LMNS filter requires, 2N' real multiplies t~o

prodluce A, output data points [2:1417].

Assuingm four real multiplies, i.s equivalent to one complex multiply, the 1 atijo of FDF1

real multiplies to LMS real multiplies is

FDFlRcal~iultipli-es, _ 3/2 10og2(N/2) + 4 (2.6:3)
LMASReal,11 ti pli eqs

The computationial savings is significant for large filtci s. as dlemonst rated in Tale 2.1.

2.2.2.2 ist LAIS Filh ; InI general, adaiptive filters which pCI form linear con-
volution al-c moie useful for digital filtering [2:152]. The Fast least-mnean-squirc adlaptive

filter (FULMS) 12:152-157] described in this section pe'rformls sti ictly lineai 'Convolution; as

opposed to the st ilcdi circular convolut ion model (liscussedI eai lli. This filter will be re-
ferred to as Freque!.r~y-domain Filter 2 (FDF2) throughout the remainder of this thesis. The

FDF2 filter, depicted in Figure 2.1. Is a block-processig adaptive filter that. p~rodluces N

out put, (data waluecs mi ing, each weight, update c~ cle. II 1)10(1u(i g N out put values. lie

2-IS8

Drop
x(k) >2N Poin~t X(k) (yk) 2N Point First yk

50% rET K) FFT-' N Points
Overlap H1 (k)

---- --------- I
I 2N Point

FFT
Gradient
Constraint

Zero Last
N Points

Front
Conjuate xPad

N zeros +
d (k)

Figure 2.4. Frecinency-doinain Filter 2 (FDF2)

2-19

filter is utilizing 2N input data values, as opposed to the JV values used by thle FDF1 filter.
The kth block inp1 ut values consist of the N point current and N point previous input blocks.

FDF2 Time-domzain Input Vector- Definition. Using the notation x, to
represent the input sequence, the NY input seqjuence values which define the kth input block
can be represented by Xk,.. wvhere i = 0,1,.-,N - I. Referring to Figure 2., thle kth
block input vector x(k) is composed of the concatenated N-point p~revious block and N-point
current block which dlefines a .50% overlap of the k - 1 and k N- point blocks. Therefore, the
kth block input vector is defined

x(k) = [X(kA'.A7) .. (kV-I) X(k,\r) . X(kAN+N-1)) (2.641)
(k- I)th block kth block

The kth block desired vector d(k) follows the FDF1 definition (Equation 2.36).

The additional input used during each block is due to the fact that the FLMS adaptive
filter utilizes the "overlap-save" i~iethod in p~erformi ng linear convolution. The "overlap-
save" method .. corresponds t~o implementing ,i L-point circular convolution of a P-point
jimpulse response l(k) Nvith an L-point segment x(k) and identifying the part of the clicular
convolution that corresp~onds to a linear convolution. The resulting Output segmnents are
then p~at ched together to form tile Output" [5:5.38]. Performing thle ci culai convolution of
an L-point seqIuence withI a P-polit sequtence (PJ < L) result,, in anl output. SeueceIIiC with the
first (P-i) points inlcoi Iect in tile conitext of linear convolution. The renlining points match
the linear convolution result [.5:558]. Ini this case, a 50%7(overlap Is employed (L/2 = N\ = P)
which has proven to lbe the most efficient [2:153].

FDF2 Freqiicncy-domain Inpid. For the kthblock, the 2N data polints

comp~risinug thle kth block input vector %(k) are tiansfoinmed using the Fast Fumi ii Ti ansfoi'0in

(FF'r). The ktill block inpu~tt v('ctoi trainsformi Complonen~t, (efinle thle (diagonial comnients

of thle ktIh block input. FFT mnat-rix X (k) [2:1531:

X(k) = d(i(Ig.F(X(k.N,) . .. X~N1 X(kNV) X(kN+A-) T

(k- I)th bluck kth block

2-20

Xo(k)

X(k) (2.65)

where F is the forward FFT operator.

FDF2 Output Calculation. Representing the N output sequence values
which define the kth output block as YkA'+. where i = 0, ,..., N - 1. the kth block time-

domain output block vector is defined [2:15.3]

y(k) = [Y(kN), . Y(kN+N-l)]

= last N termns of .F-1 {X(k)H(k)} (2.66)

where

H(k) = [Io(k) H,(k) ... H2 N,-(k)] T (2.67)

FDF2 Frequency-domain lWVeight Update. After producing the kth output
block the N time-domain error samples for the kth block are derived usi:ng

(+= dkN+, - Yk'+, (2.68)

where k represents the current block and i = 0.. .A - 1. The time-domain error samples are

transformed to create the frequency-domain error vector E(k), whidh is used to deive the

2.,'N-point FDF2 frequency domain gradient vector VF2(k).

The FDF2 frequenc -domain weit, fit update algorithm differs from that used by FDFI

in that a gradient consti int is employed. The gradient constiaint procedure is identified

in Figure 2..1 as the dotted portion of the figure. The product of the 21Nx2N kth block

transform input matrix conjugate (X'(k)) and the 2Nxl frequency-domain error vector

(E(k)) is the Gradient Constraint input. Since only A* error terms are generated from the

2N input values used, the .%'-point kth time-domain error block sequence must be padded

with .N preceding zeros in order to generate a 2N-point frequency domain error vector. Thus.

2-21

the frequenc) -domain error vector for the kth block is [2:1541:

E(k) = J{[Q_.0 (d(kN) - Y(kN)) ... (d(kN+g-1) - Y(kN+N-))I} (2.69)
N zeros kth error block

The first step in the Gradient Constraint procedure is to inverse transform the X*(k)E(k)
product and save only the first N values. This result defines the FDF1 time-domain gradient

vector [2:154]:

V(k) = first N terms of F -1 {X'(k)E(k)} (2.70)

Next, the time-domain gradient vector (Equation 2.70) is zero end-padded with N zeros.
Finally, the FDF2 frequency-domain gradient vector VF2(k) is calculated by transforming

the zero end-padded time-domain gradient vector.

Applying the definition for VF 2(k). the frequency-domain weight vector update is

[2:154]

V(k)

0
H(k + 1) = H(k) +,J

0

= H(A-) + VF2 (k) (2.71)

where T is the forward FFT operator. The FDF2 frequency-domain gradient vector 'VF2 (k)

qth term is

N-I 2N-1 2N-IV .9(k.) = 1/2N Z >3 >3 '" -'V'F'2,(k) =~ 1/A ""2NV 2N "I" 2N\-X,(k)d(kg-+,-N)
p=O r=O i=N

N-I 2N-I 2N-I 2N-I

-(/2N)2 1: 1 F >3 14" 1'2X. l':, 1 .V\7(k.)X, (.)1II(A.)
p=O r=O g=j 7=0

q = 0.12N-1 (2.72)

where
14"2N = e - j 2 -./ 2 1V (2.73)

"2-99

The derivation of Equation 2.72 is a unique result of this thesis and is presented in Ap-
pendix E along with the VF2q(k) terms for the N = 2 case. Comparing Equations 2.46 and

2.72, the VFl,(k) terms contain only the X;(k)X,(k)H,.(k) product, where 7' = 0, 1,.N -

1. The VF2q(k) terms contain the X;(k)Xq(k)Hiq(k) product as well as Y,-(k)Xq(k)lq(k)
products; where i = 0,1, .,2N - 1 and i~q. Thus, the VF 2(k) vector components utilize

more filtering information than the VF1(k) components. The additional infolrnation present
in the FDF2 gradient is essentially an average of terms associated with each bin. Theoreti-

cally then, with a noisy input the FDF2 taps should converge with less adaptation noise and
generally converge slower relative to the FDF1 taps.

Because the FFT of a discrete time signal generates complex values, the frequency-
domain components of fl(k), X(k), and E(k), are generally complex.

FDF2 Time-domain Reprmsenlalion. Having defined the FDF2 filter fre-
quency domain operation, the equivalent time-domain representation can now be discussed.

Applying the linear property of the DFT, the FDF2 time-domain weight-update equation is
defined by the inverse FFT of Equation 2.71 [2:1521. This relationship requires the k = 0
frequency-domain weight vector, H(0), to be initialized to zero. The inverse FFT of Equa-
tion 2.71 provides

V(k)

0
h(k + 1) = h(k) + (2.71)

0

Thus. the gradient constraint and a requirement that the initial 2N-tap weight vector H(k)
be initialized to all zeros, produces a 2N-tap time-domain weight vector with the last X
values equal to zero. This result is due to the fact that. a constant zero valued gradient is

added to the last N time-domain taps on aci '~ight update. x% ii, h effecti el\ re.ult.s in al

A' term time-domain weight vector that, can be specified as

li(k) = [1i(k) h,(k) ... ,,-_(k)]"' (2.7:)

Therefore, the frequenc\-domain versus t ine-doniain FI)F2 %%eight vector relationship can

be expressed as [2:1531

11(k) T) 0. _. 0J T} (2.76)

2-23

/

The veight-update equation for the jth tap can be expressed as

hl(k + 1) = hi(k) + 1iVj (k) (2.77)

where j = 0...N - 1. 7 3(k) represents the jth component of V(k) which was defined in

Equation 2.70. V3 (k) is defined [2:1531

N-1

V 3 (k) E Z e(kN+i)X(kN+i-J) (2.78)
i=O

where XkN+, and ekN+, represent the ith (i = 0, ... , N - 1) component of the kth N-point

block of the input and error sequences. Equation 2.78 shows the kth block gradient term

for each time-domain weight to be the cross-correlation of the erroi terms derived from each

block and the filter input [2:154].

With the time-domain weight vector defined, the FDF2 time-domain output calculation

can be presented. Since the FDF2 filter processes blocks of data, the output calculation is

most conveniently represented using vector multiplication. The linear convolution time-

domain output calculation for the kth block is defined [2:153]

y(k+ 1= hT(k)x(kN' +i) i =0,1,.N -1 ;k = 0,1,2,... (2.79)

where Y(k.V+,) represents the ith (omponent of y(k) (Equation 2.66) and Ii(k) is specified i:,

Equation 2.75. Letting the quantity (kN + i) represent a discrete time index, the vector

xT(kN + i) containing the A" most current input data values at time (kN + i) is specified by

x(k , + i) = [.'(kN+,) X(k.N+t) ... (kN+,N+I)] T (2.80)

FDF2 Oplimum l'ciyhI Vector. A derivation of the optimum time-domain

weight vector for the FDF2 filter is id,ntical to the LIS filter derivation (Section 2.2.1

Equations 2.32). This is based on the fact that the FDF2 filter performs linear convolution.

Using the result presented in Equation 2.32 and the relationship stated in Equation 2.76.

the frequency-domain optimum weight vector H0,pj can l)e expressed as

Io, = F{ T) (2.81)

2-2-1

N FI)F2 Real MuItltiplies
LMIS Real Multiplies H

4 4.50
I S 2.S7.5

16 1.7T50
32 1.031 I
6.1 0.59-1
2.56 0.188
1024 0.057

Tab~le 2.2. FI)F2 vs L.NS Real Multiplies

FDF2 Computational JRcquircmnls. A complutationial analysis reveals that

the FDF2 filter requires fewer multiplies for large filters than the timle-domiain adaptive filter

[2:154]. The FDF2 filter uses five 2N-point VETs andl 4N complex multiplies to produce N
output data points.

A 2N-point ['FT can be performed using an N-point FIFT andl N complex multiplies

[2:1541. Since an AT-point radix-2 ['FT reqIuires app~roximately (.V/2) log,(XV) - .' complex

multiplies [2:154], a total of (5.V/2) log,(N) comp~lex multiplies are required for thle five
FFTs. Combining the ['FT complex multiplies and -IN comp~lex multiplies give-, a total vf
(53-V2) log 2 (N) -+ 4A complex multiplies per N\ output values p~roducedl.

The time-(lomain L'2 filter require.s 2A real multiplies to produce N\ output points

12:1541]. Assuming four rea, multiplies is equi'.alent to one comp~lex multiply yields thle

following ratio:
FDF2Real.1ul1iplhsz _5 log., N + (282

I MSIRcal.1 Iuil ics A.

The computat ional savings is significant for larg,, filtei s. Table 2.2 coit ain.s thet(ratilo of I)F2
real mult iplies to timie-doniain LNIS real multilplies versus N\. In (-o:;iar.son to Table 2.1.

the ratios in T1able 2.2 a-e clearly larger. TFhis mnakes sense (lite to the fact that FD)
requires ION log,. + 1 6NV real multiplies per N\ outp~ut j)oints. VI)FI conversely. requiire.,

3N\ og.,(N/2) + SN real multiplies.

2.3 ('haplcr Suniairy

Several major p)oint.% prese'ntedl in this chaptet are now suuniarizedl before p)roceeding

to thle next chapter. Tlo begin. thle major poant s presented concerning thle I)WT were:

225.

1. The Discrete Walsh Transform (DWT) is a real valued transform that is implemented

in the same general fashion that the Discrete Fourier Transform (DFT) is implemented

(See Section 2.1.2).

2. The DWT does not have a time-shift property (See Section 2.1.3).

3. The inverse DWT of the product of two N-point DWTs produces dyadic convolution

(See Section 2.1.4).

4. Dvadic convolution uses modulo-2 addition to determine the recursive time shift,

whereas linear convolution uses arithmetic addition.

5. Dyadic correlation and convolution are identical ,iice modulo-2 addition and subtrac-

tion are equivalent.

6. The DWT requires no multiplications whereas the DFT requires N2 complex multiplies

for an N-point transfrom.

7. The real DWT matrix and the complex DFT matrix have simil-tr symmetry charac-

teristics.

S. Analogous to the DFT, Fast Walsh Transforms (FWT) exist to exploit the DWT

matrix symmetry.

The implenlentation similarity of the D\WT and DFT warrants research iM applying the

DWT to existing frequency-domain block-piocessing filtem d,igns. A circular convolution

fiequenc-domain filter (FDF1) (See Section 2.2.2.1). and the Fast LMS frequency-domain

filter (FDF2) (See Section 2.2.2.2) were examined. The next, chapter presents t o Walsh-

domain filters that are developed from the FDFI and FDF2 designs.

2-26

III. Walsh-Domain Filter Design

In Chapter II, a circular convolution frequency-domain filter (FDF1) and a linear

convolution frequency-domain filter (FDF2) were presented. In this chapter, the following

developments are presented:

1. Section 3.1 presents a Walsh-domain extension of the FDF1 filter design, Walsh-donlain

Filter I (WVDF1). The filter performs dyadic convolution and requires fewer multipli-

cation operations than FDF1.

2. Section 3.1 also presents a new algorithm, the Walsh Transform LMS algorithm 1
(WLMS1) which provides a weight update algorithm for the real valued WDF1 Walsh-

domain tap weights.

3. Section 3.2 presents a new Walsh-domain filter design, Walsh-domain Filter 2 (WDF2),
that is developed from the FDF2 filter. The filter uses a modified "overlap-save"

method and requires fewer multiplication operations than FDF2.

3.1 Walsh-Domain Filter 1 (WDF1)

This section piesents the WDF1 filter which was developed by extending the FDFI

deign into the Valsh-domain. To aid the reader, a discussion parallel to the FDFI presen-

tation in Section 2.2.2.1 will be used.

Implementation of the FDF1 design with the DWT is a direct application of Equa-
tions 2.16 and 2.18 from Section 2.1.4. The des;-n accommodates the use of the DWT

ui.'ectly (Figure 3.1) with minor algorithm changes assoJated with replacing a compl.x

duecd transform with a real valued transform.

3.1.1 I1.DFI Tiin-dotain Input I fctor Definition. VDFI filter input vectors arc as

specified for the FDFI filter. Letting x, iepiebent the input sequence, the N input sequence

values which define the kth input block are represented by xkN+,: where i = 0, 1,...,N - I

and A- = 0, 1,2,.... Using this notation, the kth block input vector is defined

x(k) = ... XkN+N-I (3.1)

3-1

x(k) N-Poinit ok -Pity)
SDW4T Eo(k) W-

YND,(rk)
XN-I~k N-Point)

DWT

I(d(k)

Figuire :1.1. \Valsh-doinain Adaptive Filter I (WNDF1)

3-9

Similarly, the kth block desired signal input vector is defined

d(k) = [dkN ... dkN+N-1]T (:3.2)

3.1.2 1WDFI Walsh-domain Input. Analogous to the FDF1 FFT input matrix (Equa-

tion 2.65, the kth block input DWT matrix X(k) is given by

X(k) = diag{V{[X(kN) ... X(kN+N-1)l}}

X o(k) 0

- (k) (3.3)

0 XN-i(k)

where W is the forward DWT operator. The kth block desired vector DWT components

define the kth block Walsh-domain desired vector D(k):

D(k) = W{[d(kN)... d(kN+N-)]}

D,(k)

D) (:3.4)

DN-I (k*)

3. 1.3 1 V'DFI Output Calculation. The transform components of the 1-t hi input block,

XN,(,k). are Inultiplied with tihe re.,pective kth block \Valsh-donain filter weights. II,(,). to

produce the kth block output, spectral components,);,(k):

Y(k) = X(k)ll(k) (3.5)

where

H(k) = [Io(k) 111(k) ... HN-I (k)]T (3.6)

Taking the inverse DVT of Y(k) produces the kth block output vector. [epresenting the

N o1It)ut. sequence values as Yk.:+,- where i = 0. I,...,N- 1, the kt i block time-domain

:3-3

output block vector is defined

y(k) = [Y(kN), ,Y(kN+N-l1)]j (3.7)

and

y(k) = VV' {X(k)H(k)} (3.8)

The)/V-' operator used in Equation 3.8 is the inverse DWT operator.

3.1.4 VVDFJ llalsh-dornain 11'eight Update. Following the same p~rocedlure used wvith

the EDFl filter, the ot lut spectral comp~onents, Y;,(k), are subtracted from the correspond-

ing desired signal spectral components, D7,,(k), to p~roduce the kth block \Valsh-doniaiii error'

components, E.,(k):

E(k) =D(k) -Y(k) (3.9)

The E,1,(k) values are used to update the Walsh-domnain filter weights.

Equation 2.45, which defines the FDF1 frequency-domain weight update algorithm,

uses the conjugate of the input diagonal transform matrix X(k) in calculating thle frequencN -
domain gradient. The corresponding W~al sh-domain weight vector calculation is therefore

11(k + 1) = H(k) + 1 LX(k)E(k) (3.10)

since the VNalsh-domnain comp~onents are real quantities. The vectoi format foi I1(k) is spec-

ified in Equation 3.6. Equation 3.10 defines Walsh Transform LMS algorithm I (WNLMSI).
A literature search indicates that WLNIS1 has not previously been developed.

Using an appIroach similar to that uised foi Equation 2.4.5, Equiiation .3.10 can Ibe ex-

preCssed as

il(k +. 1) = 11(k) + ItX(k)E(k)

= 11(k) + ,4[X(k)D(k) - X(k)X(k)Hi(k)]

= 11(k) + J 7 I,(k) (.1

31-4

where y is the convergence constant and Vwi(k) represents the Walsh-domain gradient

vector for WDF1, i.e.

Vilv0 (k) Xo(k)[Do(k) - X 0 (k)H 0 (k)]

\7 1 (k) - ii (k) A, (k) [Di (k) - X, (k) H,(k)) (3.12)

Vwi,,(k) XN ,(k)[DNI(k)- XNl(k)Hl(k)]

VF,(k) and Vw1,(k) are very similar (See Equations 2.46 and 3.12). The two vectors

differ in that the VF1 ,(k) terms, where j = 0, 1,...,N - 1, are generally complex valued

whereas the VTw 1 (k) terms are real valued.

For the previous discussion, in all cases, the index n indicates the spectral component,

k indicates the block being processed, and i is the discrete time index. Because the DWT

of a discrete time signal results in real values, the Walsh-domain components ,(k), E,(k),

X,,(k), D,(k), and Y;,(k) are real.

3.1.5 WDF1 Timnc-doimain Representation. In the preceding discussion it was demon-

strated that replacement of the FFT with the DWT in the FDF1 design requires virtually no

change to the transform domain equations presented for FDF1 (Section 2.2.2.1). The ejuiv-

alent time-domain equations for the DWT implementation, however, present a departure

from the FDF1 time-domain equations.

Using the relationship

lh(k) = W-'{H(k)} (3.13)

and the linear property of the DWT (Equation 2.7), the inverse DWT of Equation 3.10 gives

h(k + 1) = h(k) + iV(k) (3.14)

where

V(k) = W- E(k)X (k) (3.15)

Equations 2.18 and 2.15 state that the inverse DWT of the product of the two Valsh-domain

vectors E(k) and X(k) is equivalent to the dyadic convolution of their time domain vectors.

The dyadic convolution of the two tinie-domain vectois is analogous to the lineai (ox olution

3-5

of these two vectors as described in Equation 2.78. The difference is the replacement of a
modulo-2 shift for a linear addition derived shift and the incorporation of a scaling factor.

These modifications provide

N-I

V(k) = 1/N E e,(k)x(,ej), j = 0,1,... ,N - 1 (3.16)
i=O

where j is the time-domain weight index, & indicates modulo-2 addition for the binary
representations of i and j, and V 3(k) defines the kth block gradient term for each time-

domain weight. The x,(k) and c,(k) terms represent the ith component of x(k) and e(k)

respectively, during the kth block:

x(k) = [Xk ... xkN+N,-I

= [xo(k) ... x(N-_)(k)I (3.17)

and

e(k) = [ekN ... ekN+N-1

= [(dkN - YkN) ... (dk,+N-, - YkN+N-,)]

= [eo(k) ... e(N-1)(k)] (3.18)

Using Equation 3.16, the kth block weight update equation for the jth tap is defined

hlj(k + 1) = h)(k) + tV(k) (3.19)

Having defined the time-dolnain weight update equation, a similar equation foi the out-

put will fully specify WDFI in the time-domain. Using the same approach apl)lied in the
derivation of Equation 3.16., Equation 3.8 can be expressed

N-I

y(k) = 1IN 1 h,(k)x(,j.J), I =01 N A- 1 (3.20)
i=O

where yi(k) is the ith component, of the kth block output vector y(k).

Equation 3.20 states that y(k) is calculated by dyadically convolving the time-domain
taps and input data values for the kth block. The time-domain out put calculation can also

3-6

be represented in vector form. Letting the quantity (kN + i) represent a discrete time index,

where

i = 0,1,...,N-I

k = 0,1,... (3.21)

the output sample at time (kN + i) can be calculated using

Y(kg+,) = (1/N)hT(kN + i)x(kN + i) (3.22)

The vectors x(kN + i) and h(kN + i) are defined

x(kAN i) = [X(kN+i) X(kN+zel) ... X((kN+(v(NI))]
T

h(kN + i) = [ho(kN + i) h1(kN + i) ... h(N-1)(kN + i)IT (3.23)

where the terms of x(kN + i) are defined X(kN+,$D), j = 0, 1,.. ,N - 1, and D indicates

modulo-2 addition for the binary representations of (kN + i) and j.

3.1.6 HDFI Optimum Weight Veciot. The optimum time-domain weight vector for

this design will differ from that presented in Section 2.2.1, due to the fact that the filter

outjput calculations are peiformed using dyadic convolution and the autocoi relation matiix

terms aie calculated using dyadic corielation, which is mathematically equivalent to dyadic

convolution (Section 2.1.5). The performance equation for \VDF1 can be derived using -ector

representations for the output and error calculation. Having defined the kth block output

vector calculation as a xector multiplication (Equation :3.20). it iemain* to define the error

calculation in a similar mannei. Using Equation 3.22 and the a.sociated definitions,. the

error sample at time (kN + i) is defined

q(jN+,) = d(k\+,) - Y(kN+,)

= d(ki-+,) - (1IN)hr(k)x(k.X" + i) (3.24)

Making a change of variable such that the variable n is sub- , .,ted for (kN+i), Equation 3.22

becomes

y,= (l/,)hr(,)x(,,) (3.25)

3-7

where

x(n) = [X. X("6)1) . (ne(N_,))l (3.26)

and

h(n) = [ho(n) hi(n) ... h(A,)(n)) (3.27)

Similarly, Equation 3.24 becomes

C, = dn - Y

= d - (1/N)hT(7Z)x(n) (3.28)

Following the hop, procedure outlined in Section 2.2.1; substitution of Equation 3.28

into Equation 2.26 produces

[(2] = E[d 2] + (1/N 2)hTRh - (2/N)Ph (3.29)

where R, is the Walsh autocorrelation matrix and is defined as

,... 4D(-N + 1)
,,)XX(1) (x,(0) ... ,Dxx(-N + 2)

I?.= Etx(n)xT(n)] = Fb.(2) ¢ x(1) ... F1. (-A + 3) (3.30)

,- 1)) (- 2) (0)

and (j) = E[xrI.*(jj)]. Pit, is the Walsh cross-correlation vector and is defined as

F',(0)

-,,. = E[dx(n)] = (3.31)

(Dd,(-N + 1)

where 4)d(]) = E ~d,,.r(,,)]. Under the assumption that the input signal and desired signal
are stat ionary. R,,. and P,, are constant and as such require no time subscript.. Ei.at ion 3.29

3-8

is referred to as the performance equation or mean-square errol (MSE) equation for the

WDF1 filter.

Equation 3.29 chaiacterizes a performance surface that the WDF1 filter searches to find

a global minimum which is guaranteed to exist by the quadratic nature of the equation. 'Tile
weight vector that satisfies the global minimum is referred to as hoT,. Solving for h0 pt requires

taking the gradient of E[d] with respect to the h xector. and setting the gradient equal to

the zero vector. Executing the same steps as indicated in Section 2.2.1, Equations 2.31 and

2.32, yields

h,,t = NR-'PW (3.32)

Substituting Equation 3.32 into Equation 3.29 for i yields

{,m,,, = EWd]- P ;-P (3.33)

Analogous to the time-domain optimum weight vector result (Equation 2.32), Equa-

tions 3.32 and 3.33 show that the WDF1 filter optimum weight vector is determined by

the inverse of the input autocorrelation matrix and the cross-correlation vector. However,

the autocorrelation and crosscorrelation terms for \VDF1 are actually dyadic convolution

terms (Section 2.1.5). Therefore, the dyadic autocorrelation input statistics and the dyadic

cross-correlation statistics of the desired signal and input will directly affect the optimum

weight vector.

•3.1.7 IVDFI Computational Rc.quircmcnts. A computational comparison can be con-

ducted for the WDFI filter versus the FDF1 filter in the same manner as the LMS filter

was compared to the FDFI filter. The VI)FI filter uses three N-point I)WTs to produce N

output 1)ointS. No multiplication operations are involved with the l)\'Ts since an .V-point

D VT can be implemented with no multiplications and .'(." - I) adds. 2.\ real multiplieb

are required for weight update and output dalculation. ''hercfo, e. the WI)FI filter i cquires

2N real multiplies per \ output points \eist the FI)FI requirentel of 3N 1og 2(,'/2)+ SN\.

The ratio of \VI)FI real multiplies to FDFI real multiplies is

lU DFl1FRcalMiillt1,lics 2

FDFI Realmiltiplics 3 log2 (N/2) + 8 (3.34)

:3!)

Table 3.1 contains the ratio of WDF1 to FDF1 real multiplies for various N-point block

sizes. Clearly, the WDF1 filtcul presents a computational savings in terms of multiplications.

N WDF1 Real Multiplies
FDF1 Real Multiplies

4 0.180
8 0.143
16 0.118
32 0.100
64 0.087
256 0.069
1024 0.057

Table 3.1. WDFI vs FDF1 Real Multiplies

.9.2 Walsh-Domain Pilker 2 (ll'WDF2)

This section presents tile WPF2 filter which was developed by extending the FDF2

design into the Walsh-domain. To aid the reader, a discussion parallel to the FDF2 presen-

tation in Section 2.2.2.2 will be used.

Unlike the FDF1 filter, the FI)F2 filter design is not suitable for use with the DWT.

Figure 3.2 shows a block diagram of the final WDF2 configuiation. A comparison with

Figure 2.A reveals a distinct difference in that the \VDF2 filter does not, use a Gradient
Constraint. The Gradient Constraint was incompatible with the DVT and the reasons for
that will be presented in Section 3.2.-4.

3.2.1 'DF2 Tinir-dowain Inpui l'cclor Dcfinition. Like the lI'l)F2 filter. \I)F2)ro-

cesses the current and l)leviou. input blocks to produce the current output block. To facili-

tate reader undeistanding. the nutation presented for the FI)F2 filtei will again Ibe presented

at this time. Using the notation r, to represent tie input sequence. tie .V input sequence
values which define the /,th input block are represented by XkV+,, where i = 0. L. N - 1.

Referring to Figure 3.2. the kth block input vector x(k) is composed of the concatenated

N-point previous block and N-point curfcnt block, which defines a 50% overlap of the A- - 1

3-10

and k N-point blocks. Therefore, the kth block input vector is defined

x(k)= [X(kNN) ... X(kN-1) X(k.) - .(k,+_N-,) (3.35)

(k-i)1th block kth block

The kth block desired vector d(k) follows the \WDF1 definition (Equation 3.2).

3.2.2 WDF2 I'alsh-domain Input. The kth block D\VT 2'x2N input matrix X(k)

is specified using the DVT equivalent of Equation 2.65. In this case, the kth block input

vector transform components define the diagonal components of the kth block input. DVT

matrix X(k):

X(k) d(ia{9jVV[X(kNN) -.. X'kX-) (kN) . (kN+'-I)1T ,

(k-1)1h block kth block

X0 (k) 0

X(k) (3.36)

0 . 2 N -I (k)

where W is the forward DWT operator.

3.2.3 I I'DF2 Output Calculation. The kth block output vector (y(k)) is determined

using the I)\W\"T equivalent of Equation 2.66:

y(k) = [:(k\), (k:\:+N-,)]7

= 1ast A. Irms o f -N {X()lI(k)} (3.37)

where

II(k)= [Ho(k) 111(k) ... '.V- (.)] (3.38)

The FI)F2 filter retains the last A" values of the inverse transfo in result because they are

equal to the values produced by the linear conmolution sum (see Section 2.2.2.2). lI Equa-

lion :3.37 the)ro(uct X(k)ll(k) defines the dvadic convo!ution of the associated time-domain

vectors for X(k) and 11(k). Therefore. saving the last '. or any V-point combination of the

2,V valies produced. will not accomplish linear convolution. The h(lime of whiclh output,

3- 11

samples to retain is then unclear. For this thesis, the last N values were chosen as thle

output, which is stated Ii Eqjuation 3.37.

.9.2.4 11'DF2 Walsh-domzain TI'eighl Update. The FDF2 implementation was dis-

cussed in Section 2.2.2.2 and it was mentioned that the gradient constraint section of Figf-

uire 2.4 was necessar-3 to ensure lineal convolution. Section 2.1.4 presented thle fact that

the inverse Walsh Tiansform of thle product of two N-point Walsh-transformns is equivalent

to the dyadlic convolution of their time-domain sequences (Eqjuation 2.18). Therefore, the

NVDF2 filter will perform dyadic convolution whether the Gradient Constraint lprocedutre is

executed or not. As a result. using or not using the p~rocedutre fundamentally becomes a

weight update issue.

The equations pertaining to the Gradient Constraint p~rocedlure from Section 2.2.2.2.

replacing the FFT with D14/7' are as follows:

E~) WJO..0(d(kx,-) - Y(kN\)) . .. (d(kAN+.I) - Y(kAN+N-1r. (3.39)

N :croskth error block

~7(k) = first A" terms of VV1 f {X(k)E(k)) (:3-40)

7(k)

0
Fl(k + 1) = [1(k) + /,W (:3.41)

0

where W' represents the I)WT operator.

III eXe(ut ing thle last stepl of the Walsh-domain gradient calculation. it- Iiidicat ed by

the vector transform lin Equa t ioi 3.1.I. a zci o end-pladldedl \ector is t ranlsfolile imcI sng' (t(i

DWVT. Since the vectoi is, end-padded with N zeros. the resultinig 2N term Walsh domain

gr'adient vectoi is, component synn ir ic (Svo.t on 2.1I.2.1). A\s a result of iev oniponeent

sym metric gradient vector. the 11(k) vector will be component symmetric. Clemilv thlen, thle

filter spectral binl taps) are no0t (oiing to convergre indle[pendent ly. Therefore. t lie- Gradient

Constraint. structmiie of Figure 2.1I is incomlpat ble with a DWT based \~ersioli of FDF2.

Eliminating the 50%X "over-lap save*' method. which incorporates thle Gradient ('oustlaint,

p~rodluces a filter equivalent to \V l W) Ilowm~er. elimninat ing tilie G;radient ((Int raint and

_____ _______________________ ____________________ ______3- 12 _________

x(k) 2NPii. X(k) Y(k) 2.N Point First V(k
2 WN Pon xW 'N P it

Overlap1(k

2.\ =oint Front

d(k)

Figuire 3.2. WV.alsh Adaptive Filter 2 (xVI)F2)

retaining the .30,"(ove-- lii character iswj presents a de:sign ulie with respect to the X~V I

filter.

Remo, Ing the Cradient Constraint block from the desigan leave!. a Walshi-domnainl "g.

(ldint vector that is Idecntical in ternis of calculation to that which appedrs in Equation 3.10:

11(k: + 1) = 11(k) +1 ItX(k)E--(Ik (3.42)

%here the X(k). E(k). andl 11(k) v-ectoJr components are real valuedl quantities. The prodil

.X(k)E(k) defines the I)2Walsh-domain gradlient x-e(tor Ct-k.(onnparatixelx. the

WVI)FI vector VII 1(k) and! WI)12 vectoi VIS 2(k) are un(iue since L(kj for thle \XDF'2 filter is

dlerivedl from the z.ero front-padded k-th block error vector (-,ee Equat ion 3.391. E~quation 3.12

wvill lbe referred to as Walsh Transform [MS algorithmi 2 (\\LM\S2). A literature -seardIi

indlicates that \\I,M\IS2 has ne~ver been devetloped previously.

:1

Using Equations 3.39, 3.37, and 3.36 the Walsh-domain WDF2 gradient vector for

N > 2 is defined

Vlil20 (k)

VIV21 (k)

'71112,(k)

VIV2(k)

VIV2(k) =(3.43)

VVi2,2 NV4 (k)

V H22 :1'.-3 (k)
V I2 2 N-2 (k)
'71S2 2 N-1 (k)

Xo(k)[DN,(k) - Xo(k)Ho(k) + X1 (k)HI(k)]

X, (k) [- DN, (k) + Xo (k) Ho (k) - X, (k) H,(k)]

X2(k)[-DN,(k) - X2(k)H 2(k) + X3(k)11 3(k)]

X3(k) [Div,(k) + X2(k)H 2 (k) - X3(k)H 3 (k)1

-1/2

X(2N...)(k)[D.. 2,- (k) - X(2 N... 4)(k)IJ(2 N... 4)(k) + X(2A-3)(k)iI(2 x, -3)(k)I
AV(2N-3)(k)[- DAN 2(kI) + AV(2N... 4)(k)IH2N-. 4)(k) - X(2 N-3) (k)II](2 N- 3) (k)]

-V(2N- 2)(k)[-DNN.-I (k) - X(2N-2)(k)H(2 *.. 2)(k) + X(2N-1)(k)H(2N-j)(k)I

X(2N.I)(k)[DNA. -,(k) ± X(2N- 2)(k)H(2N-2)(k)- (N1k)2-)k]

where the DNA,(k,) ternms repieselit the nth component of the N-point D\Tof the c'ineiit

N-point block of the desired -signal. For N = 2. 7' 2(k) can be expressed as

V'11'()(k)Xo(k)[I(2 k) + d(2k+I) - 2X 0 (k)iHo(k) + 2X 1 (k)IIj (k)]

'7W,(k) 1/4 vI (k)[-d 2k)~ - d(2 k+I) + 2Xo(k)Ho(k) - 2Xl(k)H1 (k)] (.-)
V 2,(k) A'2(k)[-d(2k) + d(2 1+1) - 2X 2(k)11I2(k) + 2X3(k)113(kI)]

V11V 23 (k) X3(Ic)[d(2k) - d(2k+]) + 2XV2 (k)H 2(k) - 2X 3 (k)11 3 (k)]

Equations 3.43 and :3.4-1 are derived in Appendix ED.

.3-14

Comparing Equations 3.12 and 3.43, the 7 1i'2,(k) terms contain X3 (k)H 3 (k) and
X(+i(k)H(,+l)(k) products, where j = 0, 2,4,...,2N - 2. Conversely, the Vu'1 (k) terms
contain only the X3 (k)H,(k) product, where j = 0,1,... ,N - 1. The terms are distinct
because a different E(k) is used for WDF2 (See Equations 3.39 and 2.44). This relationship
is somewhat analogous to the associated FDF1 and FDF2 transform-domain gradient vector

comparison.

The Vw 2,(k) components are distinctly different from the VF 2,(k) components. The
VF 2,(k) components, aside from being generally complex valued, contain multiple product
terms (See example in Appendix E) whereas the Vw 2,(k) components contain two prod-
uct terms. Thus, the removal of the Gradient Constraint procedure reduces the aveiaging

exhibited in the VT2(k) vector components to two terms for the Vw 2(k) components.

3.2.5 WDF2 Time-domain Representation. Having defined the Walsh-domain struc-
tures of WDF2, the time-domain representation of this filter can now be addressed. The
time-domain weight-update algorithm is derived from the inverse DWT of Equation 3.42.

Taking the inverse DWT of the product E(k)X(k) yields the time-domain dyadic convolution
result of the two vectors

x(k) = [X(kN-N) X(kN-1) X(kN) ... X(kN+N-1)]) (3.45)

(k-1)th block I'th block

e(k) = [0 ... 0(d(k) - Y(kN)) ... (d(kN+N-1) - Y(kN+N-I))I (3.46)
N zeros kth error block

The dyadic convolution result defines the time-domain WDF2 gradient vector V(k). The

jth component of V(k) is defined

2:-1

Vj(k) = 1/2N E 2,(k)x(ie,)(k), = 0, 2A- 1 (3.47)
1=0

where j is the time-domain weight index, G indicates modulo-2 addition foi the binary
representations of i and j, and V(k) defines the kth block gradient term foi each time-

domain weight. The .r,(k) and e,(k) teims represent the ith component of x(k) and e(k)

3-15

respectively, during the kth block:

x(k) = [X(kNN)... X(kN-1) X(kN) ... X(kN+N.1)]

(k-I)fh block kth block

= [xo(k) ... x(2N_,1)(k)] (3.48)

and

e(k) = [0...0 (d(kN) - Y(kN)) ... (d(k,+N-1) - y(kN+N-,))]T

N zeros kth error block

= [so(k) ... e(2,v)(k)]r (3.49)

Using Equation 3.47, the time-domain weight update equation can be specified

h3(k + 1) = hj(k) + ;tV(,) (3.50)

The time-domain weight index j now spans 2N taps as opposed to the FDF2 case of N taps,
because the gradient constraint was eliminated. For a block size of N input data values, the
WDF2 filter has a time-domain equivalent filter with 2N taps as opposed to the FDF2 filter
which has N time-domain equivalent taps. The number of output values remains N.

The time-domain equivalent of Equation 3.37 i. (letermined using the relationships
stated in Equations 2.18 and 2.15 from Section 2.1.-4. Equation 2.18 states that the inverse

D\VT of the product X(k)H(k) yields the dyadic convolution of the associated time-domain
vectors x(k) and h(k). The dyadic convolution sum for the 2N-point kth block input vector
x(k) and time-domain tap vector h(k) is given by

2N- I

yv(k) = 1/2N E hj(k)x(,,)(k), i = 0. . 2N - 1 (3.51)
3=0

where x(k) is the ith component of x(k) (see Equation 3.,48). and D indicates modulo-
2 addition for the binary representations of i and j. The last N samples of this result
represent the values Y(k:\V+)- where j = 0,..., N - 1. and k is the block index. Therefore,

3-16

the WDF2 kth block output can be expressed as

2N-1

y,(k) = 1/2N E hj(k)x((,+N)Ej)(k), i = 0,1,...,N - 1 (3.52)
J=0

where yi(k) represents the ith component of y(k) such that

y(k) = [y(kN) ... Y(kN+-1)

= [yo(k) ... l)(k)] (3.53)

The output calculation in vector form can be expressed as

Y(kN+) hT(kN + i)x(kN - N + i) j=0,1...,N-1 (3.54)

where

x(A-N - N + i) = [X(kNN) X(kNA+) ... X(kN+N-)] (3.55)

and h(k) is specified as

li(kN + i) - [h(,+\,(k) h((:+j,,)ei)(k) ... /h((,+N)E(2N_1)(k)] (3.56)

In comparison, both WDF1 and WDF2 kth block output vectors are determined from

the dyadic convolution of x(k) and h(k). The distinction between WDF2 and WDF1 output

calculation, aside from input vector and tap vector length, is that only the last N valueb of the

WDF2 dyadic convolution result are saved as the N output Xalues for the kth block whereas

the N-point WDFI dyadic convolution re.ult represents that. filters kth block output. In

both cases the tinie-dlomain weight vector is the same size a. Ihe input vector.

3.2.6 I DF2 Oplinmv I Wcight V0ccor. Given that the output values are derived from

the dyadic convolution of the input and time-domain weight vector in both cabes, the \VDF2

MSE equation is the same as that produced for WDF1 (Equation 3.29) with the constant

term changed from N to 2A' 't, .-count for the fact that the WDF2 filter is convolving 2N

size veclors.

3-1T

Replacing the N term in Equation 3.29 with 2JN, yields the following \VDF2 MNSE

equation

i[t = Efd~z + (114N)hRh - (1/N)P~h (3.57)

where the matrix R,, and the vector P,, are as specified in Section 3.1, Equations 3.30 and

3.31. Applying the optimnum weight vector derivation p~rocedure outlined in Section 2.2.1,

the optimum timne-domiain weight vector for WDF2 is

h0 pt = 21\R-1 P,,, (3.58)

Substituting Equation 3.58 into Equation 3.57 for h yields

2)n P 7P., (3.59)

which is the same result that was derived for WDFI (Equation 3.33). Theoretically this

is a reasonable result given that the optimum time-domain weight vectors differ only by a

factor of 2. Equations 3.58 and 3.59 show that the NVDF2 filter optimum weight vector is

determined by the inverse of the input dyadic autocorrelation mnatrix and the dlyadlic cross-

correlation vector. Therefore, as in the case of the WDFI filter, thle dlyadic autocorrelation

input statistics and] the dlyadlic cross-correlation statistics of the desired :,Iial and inp~ut

dletermnine the op~timium weight vector.

.3.2'. 7 IVDF2 Computationial 1?cqzvircments. A comp~utatioJnal cornpalson can be con-

ductedl for the \NDF2 filter versus the FDF2 filter in the samne manner ab the LMNS filtei

versus the FDF2 filter. The WDF2 filter uses three 2N-point DW,\'1s to p~roduIce A' outp)ut

points each reqiinig no multi1plications since a 2N-poimit D\V'T can siml\ be imnplemented

with 2A .(2N - I) adds. INA real mult iplies are required for weight update and output calcu-

lation. Therefore. the \VDF2 filtei requires IA7 real multiplies pei Nout put points versus

the FI)F2) requiiirement of I ON lo-2 (N) + I6N. The ratio of \VNDF2 real nidmtip~ies t~o F"DF2

real multiplies Is
I) F2'Rcaljulti'p~Ics (3.62

FDF2Rc(AlzultiplIes 5 Slog2(N) + S 3.O

Tahle 3.2 summinarizes the compIutational savings related to multiplications.

3-I1S

N WDF2 Real Multiplies
FDF2 Real Multiplies

4 0.111
8 0.086
16 0.071
32 0.061
64 0.053
256 0.042
1024 0.034

Table 3.2. WDF2 vs FDF2 Real Multiplies

3.3 Chapter .5umrnary

Two adaptive Walsh-domain filters were developed by extending the FDFI and FDF2
filter designs into the Walsh-domain. The important developments presented are as follo s:

1. The FDF1 filter supports using the DWT with no modification to the design. This

implementation was termed Walsh-domain filter I (WDF1) (See Section 3.1).

2. The gradient constraint portion of the FDF2 design is incompatible with the D\VT.

Removal of the gradient constraint does result in a DWT compatible design. This

implementation was termed \'alsh-domain Filter 2 (WDF2) (See Section 3.2).

3. The \VDF1 and WDF2 Walsh-domain weight update equations (WLMSI and WLNIS2)

are based on the complex LMS algorithm and they are very similar but distinct.

4. The dyadic autocorrelatior. input. statistics and the dyadic cross-correlation and au-

tocorrelation statistics of the desited signal and input determine the optimum weight

vector for WDFI and WDF2.

5. A Walsh-domain LMS algorithm was developed for the first time in this thesis.

The next chapter discusses the implementation and verification of WDF1 and \VI)F2 soft\,%%re

irplernentations.

3- 19

IV. Filter Verification.

4.1 Introduction

The previous chapter presented a theoretical analysis of two Valsh-domain adaptive

filters; designated WDF1 and WDF2. The next step is to implement the filters in software

and then verify the software implementations. Therefore, there are three major goals for

this chapter which are presented in the remainder of this section.

1. The equations and algorithms implemented in the WDF1 software are defined (Sec-

tions 4.2.3 and 4.2.2).

2. The equations and algorithms implemented in the WDF2 software are defined (Sec-

tion 4.2.4 and 4.2.2).

3. The WDF1 and1 WDF2 filters are tested for errors (Sections 4.2.3.2, 4.2.4.2, and 4.3).

4.2 Software Algorithm Identification And Testing.

This section is intended to familiarize the reader with the WDF1 and WDF2 software

and associated algorithms. This section also discusses the specific test used to verify each

filter and the results of the test. A brief discussion concerning two filters used in this thesis

for comparison purposes is also presented.

4.2.1 Comparison Fllers. This thesis utilizes a time-domain LMS adaptive filtei and

a frequency-domain block-processing filter in Chapter V to evaluate relative peiformance

measures for the WDFR and \VI)F2 filters. The time-domain LMS adaptive filtei will be

referred to as the TI)F filter thromghout the remainder of this thesis. The TDF filter is a

single-input adapltive transversal filter (Section 2.2.1) \xith a variable filter size. The F'l)1:2

filter (Section 3.2) is used as a baseline for comparison. 'This filter uses a radix-2 IFT.

"'hi oughout the remainde of this thesis, this filter will be referred to as the FDF filtei.

4.2.2 Gain ('on.slant Calculalion. There are several methods for calculating a gain

constant it based on the filter)roc ssing domain. Gain constant for the TDF filter is defined

as .JiI r,.j,,slflCflt Al

II = '(.~';i ,aiEn~ig-y) V ""- " (E1.1)

41

where N represents the number of filter taps and x, is a stationary signal [3:3-6]. Misad-

justment is defined as ". . .a measure of how closely the adaptive process tracks the true

Weiner solution ... " [3:3-6]. A larger Al value resu: s in a larger p value and produces faster

adaptation but at a cost of greater adaptation noise.

There are two methods of calculating the gain constant, it, for the block processing

filters. The first uses the average power in each spectral bin. For the \VDFI and WDF2

filters, the 7ith bin gain constant, it,, is calculated as follows

" = M [Pa,,,,,(n,)](4.2)

E [Pbz 7, (k)]

where Pb,,,,, (k) = ,(k), k represents the kth block, and X,(k) represents the nth diagonal

component of the input transform matrix X(k). In the case of the FDF filter, the spectral

bins and their respective filter weights are complex. Therefore, the FDF filter utilizes an

independant yu for the real and imaginary parts of the bin. Calculation of 1trea and it...

the real and imaginary gain constants respectively, using Equation 4.2 is accomplished by
replacing Pi,,. (k) with Pb,,nrea. (k) and Pb,,,i,,, (,) respectively.

The second calculates a constant i common to all of the spectral bins. This method
calculates the average power in each bin with respect to the block index k, Pb,,,,, and averages

the Pb,,,, values to produce Pbinug. For the \,\I)F and WDF2 filters, the gain constant is

calculated as follows Aisadj uslinct (4.3)
I = 4.Pbm)v

where
71- 1

Pbnavq = 1/ m pb,,, (4.4)
=0

and q; represents the number of spectral bivs (2N for \VDF2 and N for hII). In the case

of FDF2, the averagc of the sum of all the real and imaginary bin component powers is used

to calculate Pb,,,,.

= I/MN / (Pbrr, + Pb,,,,,1fg,) (.5)
hi0

where the I/-IN Constant accounts fo," tile 2N re'al Ibins and 2N imaiginary bills.

.1-2

4.2.3 IVDF1 Filter The WDF1 program implements the equations developed in the

previous chapter. In performing the DWT and inverse DWT, the program implement. the

direct form of Equations 2.3, 2.1, and 2.4.

4.2.3.1 WDF1 Software Overview The WDF1 software flow is as follows:

* Initialize variables, arrays, and vectors

* Load input signal and desired signal

" Calculate the number of N-point blocks in the input

* Calculate p

" Loop Slart: Create the N-point current block input vector

" Calculate the Walsh-domain N by N diagonal input matrix X(k)

" Calculate the \Walsh-domain N-point desired block input vector D(k)

" Calculate the N-point output block vector y(k)

" Calculate the Walsh-domain N-point error vector E(k)

" Calculate the \Valsh-domain N-point Gradient vector

* Update the N-point Walsh-domain weight vector using \WLMSI

" Loop to Loop Start if more blocks

4.2.3.2 l'"DFI Filter Verification Test This test verifies the \\:DFI filter which

includes Walsh Transform LMS algorithm I (WL.M1S1). The test input signal used is derived

from summing the columns of the \Walsh 8 b% S (Ws) transform matrix (See Appendix A),

and periodically repeat ilng the resultant sequ.nce. Sumnming the coltinins of W, prodi (s anl

8-point sequence of

Xk S 0 0 0 0 0 0) (.1.6)

with a corresponding)\VT of

X,={1 1 1 1 I 1 1 1) (4.7)

The sequence exl)res-ed in lEquation .1.6, with tle filtei configured t.o process S-point blocks,

i., tihe in1)111 vct (01) foi lhe kth block processed. The desired inpti. signai is Irodliced

,4 -3

by first multiplying each row of \ 5's by a different constant. The resulting modified W 8

matrix columns are then sumnmed, producing an S-point sequence, which is then repeated

periodically. Utilizing the coefficients listed in Table 4.1 produces the S-point sequence

dk = {18.15 - 6.85 - 2.934 - 0.984 0.411 - 5.607 1.033 6.652) (4.8)

with a corresponding DWT of

A, = {1.2341 0.6116 3.5123 0.2921 4.8234 1.9142 2.8314 2.9311} (4.9)

Tihe sequence expressed in Equation 4.S, with the filter configured to process S-point blocks,

is the desired vector d(k) for the kth block processed. Since the input spectral components

for each block processed all have a magnitude of 1 (Equation 4.7) and tile corresponding

desired block spectral components (Equation 4.9) are constant from block to block, the

corresponding tap ,'alues for each bin should theoretically converge to tile desired spectral

component values. The input and desired signal are depicted in Figure 4.3.

Configuring the WDFI filter as specified in Table 4.2, the WDFI output error is

depicted in Figure 4.4. Figures 4.9 thru 4.16 depict the adaptation tracks for the bin taps.

Clearly. the figures show that \'LMSI is a valid Walsh-domain weight-update equation. All

of the data in the figures and tables presented foi this test were produced using a contant it

value for the bin taps. The results using ani independantl derived ji value foi each l)inI tap

were identical and the figuies and tableh presented foi this test aic representative of those

results. Table 4.3 displays the theoretical and experimental tap values for the WDF1 filter.

•1 .1

Row Coefficient
0 1.234
1 0.611
2 3.512

3 0.292
,4 4.823

5 1.914
6 2.831
7 2.931

Table 4.1. Verification Test coefficients

I Parameter SettingBlock Size 8
Misadjustmnt 0.2
Datasize 1000j

Table .1.2. Verification Tlest \'VDF1 filter settings

1 Tap Throrctical Experimental

0 1.2:34 1.234
0.611 0.611

"2 3.512 3.512
3 0.292 0.292
1 4.823 .I 2:3

1.914 1.91.1
6 2.831 2.831
7 2.931 2.931

Talble .1.3. W\'I) I Verification Test. Experimental Results

1-5

2Ii i
A 15
in

0.5
0

t -0.5
S - 1

d -1.5
-2 I I I I I

0 1 2 3 4 5 6
Sequency

Figure 4.1. The DWT of one period of the Input Signal

A 4

P 2
I I i
I I I I]

0 2 3 .1 5
Seq uellcy

Figure .1.2. The D\V' of one period of the Desired Signal

.t-6

10
V
0 5

t 0

10 -

-10

0 5 10 15 20 2.5 30
Time Index, ij

Figure 4.3. VD F1I Verification Test Input Signals

d -Y

E

0- 7

4.2.4 W1DF-2 riIlu' The WVDF2 program Implemients the equations (developed in Sec-

tion 3.2 of the p)rev'ious chapter. As with the \XI)1VI' program, the D\VT and Inverse DWT'I

transforms are performed using Equations 2.:3. 2.1. and 2..

4.2.4.1 1'DF2 Soft-uma;- Overicw-*u The \VDI:2 software flow is as follows:

" Initialize variab~les, arrays, and vectors

* Load input signal and desired signial

" Calculate the number of N-point blocks inI the input

" Calculate pi

" Loop Start1: Create the 2N-point Ipast-currenlt l)ock input vector

" Calculate the W-alshi-domain 2AN by 2.-- diagonal Input mnatrix X(k)

" Calculate the N'-point output block vector y(k)

" Calculate the W-alsh-domnain 2X\-point error vector E(k)

" Calculate the WValsh-domain 2.N-'point Gradient vector

* Update the 2N-point W-alsh-domain weight vector using WLMNS2

* ooJ) to Loop Slart if more blocks

4J.2.4.;? ID2 FiItcr V riiication This test verifies the \I)F2 fili-,er software

which includes Walsh Transform LNIS algoIithni 2 (WX-I.M\S2). The -;igmtl set istd to verify

the W-XDFI filter Is also used to verify- the XVDI'2 filter. Since the WDF2 iltei utilizes- the

cc~ncateiiated carrent and p~revious inpot. dl a blocks to e:auate the curr-';it block N\ output
vaus, thle input vector, excluding the first Wlork processedi. is given b\

x(k) ={IS08 00 0 0 1 S 0 0 0 00 }0 (4.10)

wit h a corresponding l)WT of

1.231 00 0.612 3.-120 0l 0.292 -1.83 0 0 1 9 1 .)1 3 2., ':)!3) k, 2

The 2N- point DWT, withlV = 8, of the desired sequence specified by Equation 4.8 for each

block is

d(k) {18.15 - 6.85 - 2.934 - 0.984 0.411 - 5.607 1.033 6.652

18.15 - 6.85 - 2.934 - 0.984 0.411 - 5.607 1.033 6.6521 (4.12)

with a corresponding DWT of

D, = {1.234 0 0 0.612 3.512 0 0 0.292 4.823 0 0 1.914 2.831 0 0 2.931} (4.13)

The ;nput vector and desired vector Walsh spectrums are illustrated in Figure 4.5 and

4.6. The figure- show that the zero valued components are idIntical in number and occur
in the same index positions. The nonzero valued componeats for each input block are of

magnitude 1 and therefore the corresponding taps for each bin should theoretically converge

to the desired bin spectral magnitudes.

2/

2lP I I I -A 1.
III

1 0.5 L L I Ii 0
t. -0. 5

- 1.5

0 2 ,I 6 8 10 12 14
Sequency

Figure 4.5. The 16-poiint D\'VT of two periods of the Input Signal

Configuring the ,VDF2 filter as specified in Table 4.2. the WDF2 output error is

depicted in Figure 4.8. Table .1.4 display the theoretical and experimental tap values for

the \VDF2 filter taps. The results (lipla.xCd in the figures and tables were produced using

a ,.(nstant p value for the bin taps. The previous input block for the initial current input

block was init.iaiized to zero.

Figure 4.7 depicts the DWT of the initial input vector processed by the filter. As

Figure 4.7 shows, the initial \,Val.,h-dmai i input spectrum is such that there are no zero

4t-9

A 4
mI
p 2
1 0
t
U -2
d
e -4

0 2 4 6 8 10 12 14
Sequeacy

Figure 4.6. The 16-point DWT of two periods of the Desired Signal

2
A i i i i i

A 1.5 -

In

1 0.5

li --0 r

t -0.5
(I -2 4 _ ! I

0 2 4 6 8 10 12 14
Sequency

Figure 4.7. The 16-point DW'1 of the initial input vector

4-10

0.1 I I

0 05
E
r
r
o 0
r(V)

-0 05

-0.1
910 920 930 940 950 960 970 980 990

'rine Index, i

Figure 4.8. WDF2 Filter Verification Test Output Error.

components. After the first block (k = 0), the bin positions 1,2,5,6,9,8,13, and 14 become
zero. The bin taps in those positions update after the first block is processed and theni

freeze because their corresponding inputs are zero value thereafter. Figures 4.17 thru 4.32
illustrate the adaptation tracks for each of the bins utilizing a constant It value. Table 4.4

contains the experimental versus theoretical tap value results derived using a constant P
value for the bin taps. Initializing the previous input block to the sequence specified in

Equation 4.6 produces the spectrum in Figure 4.5. With the initial previous input ve'tor
initialized in this fashion, the experimental tap values correspond exactly to the theoretical

values.

Alternatively. using an independantly derived p value for each bin tap, and ignoring

the first block the filter processes when accessing the average power in each bin, produces
experimental tap %alues that are equal to the theoretical values. The first previous block,
when initialized to zero, generally produces a block spectrum that is unique with respect to
succeeding block spectrums. Since the initial block is generally unique it can be considered

an anomaly and therefore ignored. The tables and figures displayed for this tebt are othei wise

representative of tie results obtained when using a different i value foi each bin tap. Clearly,
the figures and tap adaptation results show that WLMS2 is a valid \Valslh-domain weight-

update equation.

4I-11

Tap Theoretical Experimental
0 1.234 1.234
1 0 0.123
2 0 0.061
3 0.612 0.612
4 3.512 3.512
5 0 0.351
6 0 0.029
7 0.292 0.292
8 4.823 4.823
9 0 0.482
10 0 0.191
11 1.914 1.914
12 2.831 2.831
13 0 0.283
14 0 0.293
15 2.931 j 2.931

Table 4.4. WDF2 Verification Test Experimental Results

4-12

A 1

P 0.5

0

tt -0.5
2

d -1
d I I I

0 20 40 60 80 100 120
Block Index, k

Figure 4.9. WDF1 11o(k) Adaptation Track

0.8 ,
A 0.6
II 0
p 0.4

0.2
0

t -0.2
U -0.4
d -0.6

-0.8 I
0 20 40 60 80 100 120

Block Index, k

Figure 4.10. WDF1 H1 (k) Adaptation Track

A 3
11 2

pI I

i 0
t -1
U -
d
C -3

0 20 40 60 80 100 120
Block Index, k

Figure 4.11. WDFl l 2 (k) Adaptation Track

.1 I-13

0.4 '
A 0.3
p 0.2

0.1
i 0

t -0.1
u -0.2 -
d -0.3 -

-0.4

0 20 40 60 80 100 120
Block Index, k

Figure 4.12. WDF1 113(k) Adaptation Track

A 4
m
P 2
I
i 0
t
tI -2
d
e -4 I I III.

0 20 40 60 80 100 120
Block Index, k

Figure ,1.13. WDF1 HI(k) Adaptation Track

2
A 1.5
Inp1

0.5
0

-0.5
u -1
d

-2 I I I I

0 20 40 60 so 100 120
Block Index, k

Figure 4.14. WDF1 Hs(k) Adaptation Track

4-14

A 3
m 2
P 2

1

0
t -1

d -2
e 3 - I ! I

0 20 40 60 80 100 120
Block Index, k

Figure 4.15. WDF1 H6 (k) Adaptation Track

3

m 2

U

d -2
e -1d -2

0 20 40 60 80 100 120
Block Index, k

Figure 4.16. WDF1 H17(k) Adaptation Track

p
0 .5

0
-0.

d

0 20 40 60 80 100 120
Block Index. k

Figure 4.17. WDF2 H0(k) Adaptation Track

4-15

A 0.8
In 06
P 0.4

0.2 __ _

0
t -0.2
U - .

d -0.6
e -08

0 20 40 60 80 100 120
Block Index, k

Figure 4.18. \VDF2 H, (k) Adaptation Track

0.2 I

A 0.15

0.05 _________________________
-0.05

(I-0.15
-0.2 F0 20 '40 60 80 100 120

Block Index, k

Figure 4.19. \VDF2 j-12(k) Adaptation Track

A 0S
In 0.6

-0.2

-0

0 20 '10IIcIdx 60 s0 100 120

Fioure '4.20. XVDF2 113(k) Adaptation Track

4
A 3
in 2
pi 1-

I0
t -1

-2d -3

4 i II

0 20 40 60 80 100 120
Block Index, k

Figure 4.21. \VDF2 1,1(k) Adaptation Track

A 0.8
In 0.6 -
P 0.4 -

0.2 -0'
-0.2 -

u -0.4
d -0.6

e 0.8 -

0 20 40 60 80 100 120
Block Index, k

Figuire 4.22. WDF2 llh(k) Adaptation Track

.I 1

0 . 2

A 0.15

P
0.1

i 0.05

0
t -0.05 -
u -0.1d -0.15

-0.2 I I I I

0 20 40 60 80 I00 120
Block Index, k

Figure 4.23. WDF2 I16 (k) Adaptation Track

I I i i I I ii

A 0.8
11 0.6
P 0.4

1 0.2 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0
t -0.2

-0.4d -0.6
-

e 0.8
-I V - I I I I I

- 0 20 40 60 so 100 120

Block Index. k

Figure 4.24. WDF2 H-(k) Adaptation Track

6 r---

I 2

i ot - 2

d -4

0 20 ,10 60 80 100 120
Block Index. k

Figure 4.25. WDF2 11s(k) Adaptation Track

•4,-I

Ii

A 0.8in 0.6 -
P 0.4-

0.2 -i 0
t -0.2

u -0.4
d -0.6
e -0.8 -

0 20 40 60 80 100 120
Block Index, k

Figure 4.26. WDF2 119(k) Adaptation Track

S I I I I i

A 0.8
n1 0.6 -P 0.4

0.2i 0

t -0.2 4u -0.4-
d -0.6]
e -0.8 =-1 I I , I-

0 20 40 60 80 100 120
Block Index. k

Figure ,.27. WDF2 I1o(k) Adaptation Track

A 2 "i -

P!

I Id
dc -2F i

0 200 .10 60 s 100 120
Block Index. k

Figure ,1.28. WDF2 II(k) Adaptation Track

[- 19

4 -- - - --- -

A 3 -
m 2
p 11

i 0
t -1-

-2
de -3-
0

-4 I I I

0 20 40 60 80 100 120
Block Index, k

Figure 4.29. WDF2 H12(k) Adaptation Track

I I I I I I i

A 0.8
m 0.6
P 0.4

1 0.2
S0L -0.2

U -0.4
di -0.6

,. -0.8
-- I I I I I

0 20 40 60 so 100 120
Block Index, k

Figure 4.30. \\DF2 II 13(k) Adaptation Track

1 0t'- I II~A 0.6 -

0.2r"
1 0

t - .2"
-0.-!..

0 -~0.8

0 20 40 60 so 100 '20
Block Index. k

Figure .1.31. WDF2 11.,(k) Adaptation Track

.1-20

A 3 AI I

U -

0d 20 40 60 80 k CO 120

4.3Verfiatin TstFiguire 4.32. NVDF2 HI.5(k) Adapttion Track

This section addresses a test that was '1sed to validate the TDF and FDF software.

2h ,, Lest was also used on the WVDF1 and WDF2 filters and the results are discussed.

The FDF and TDF filters were tested using the filters in a forward modeling configura-

t~r Se-~ Figure.L3:i). The input is zero-mean unit-variance A.'itiv-e \Vhite Gaussian Noise

('N(0.1)). Th le desired signal is the N(0.1) noise passed through the plant (a four tap digital

FIR filter). Utilizing the Z-transform. the theoretical transfer function of the adaptive filters

after convergence is given ',) [101

H1z x(Z)(..)

where 4)d.(Z) Is the Cross-power spectrum of the desired signal and input signal and 4),,(z)

is the Auto-power spectrum of the input signal. Representing the z-transformi of the plant.

transfet function by H,,)(z): the the Cross-power spectrum can be expressed as (10J

4!()= 1W~~)jr~ .. 5

The .\uto-power sp~ect rum. 4),,() in this case Is one because the Input Is X(0.i) noise (10].

Utilizing this fact and Equations 1.1-4 andl4.5 the transfer function of thle adaptive filters

is determined b%

H1(Z) ,) - 1(.1)

Equation 1.16 stitc~i that the transfer functions of the adaptive filter,- should theoretically be

equal to the plant trumsfer function. InI other words. the filter tap) %%ight.s should comN~ere

4-21

dkl

I - '

Algorithm

Figure 4.33. Verification Test 2 Configuration

-Tap C ase lI Gase2j

jhot 6.123 6-1223Khi 0 1__127
h3 0 4-001~

'Ialble -1.5. Forward Modelling Test:Plant tap valuies for Case 1 and C'.se 2

to the plant FIR filter tap weights. In the I'IF case. this means that thle inverse FF1' of the

frequency-domiain bin, taps, after they have comverged, should be equi'.alent to thle plaut. FIR

filter tal) Weights. TIwo sets of tup weights wer usdor the plant Flit in this tet(Table -15)

Thie first was a trivial case (See Tfable 4.5 Case 1): s#et thle h, tap to 6.12:3 and the remainingr

three to zero. This configuration simply scales the X(0.1) signal by a factor of 6i.12. The

FDI: filter was configured to process 1 point b~locks. which mean., the filter v~iL using 8-point

FFTs and, accordingly had 8 frequ'mcy-doinaii; taps. The 8 frequenc\ (loinain taps inverse

transformn to an epiiivaleiit I tap time domnain FIR filter via thle gra(Iient const ranit lIedl ID

the FDF2 dlesign.

For Case I. the TI)F taps converged :o [6.12:3 0 0 0]. The inverse FF1' of thle

FDE frequency-domnain taps. after conveigen e. pro(:; icelhe samne resuilt. lin Case 2. the

.1-22

time-domain tap weights for both filters achieved the plant solution. In both cases, a misad-

justment value of M = 0.1 was used and the FDF filter used a constant p value. The FDF

filter failed to converge to the theoretical tap values when a separate /I for each frequency

bin was used.

The forward modelling test was also used to verify the WDF1 and WDF2 filters.

Both filters were configured to process 4-point blocks, using 4 and 8 Walsh-domain taps for

the WDF1 and WDF2 filters respectively. The equivalent time-domain -yadic convolution

filter for WDF1 has 4 taps and 8 taps for the WDF2 filter, because WDF2 doesn't use a
gradient cnstraint. Nether filter was expected to achieve the plant values because both

filters perform dyadic convolution. In this case, the N(0,1) input and the plant filtered
version of the N(0.1) signal serve as a nonperiodic input and desired signal pair.

Using the tap values for Case 1, and a Misadjustment of M = 0.1, all of the Walsh-
domain tap values converged to 6.123 for the WDF1 and WDF2 filters. Both the independant

and constant bin it calculations produced the same result. This matches the theoretical ex-

pectation. N(0,1) noise produces an N-point DWT composed of all N sequency functions

used in the transform. The DWT is a linear transform (Section 2.1.2), so the scaling per-
formed by the Plant results in a scaled version of the input, signal transform for the desired

signal. Accordingly, the Walsh-domain bin weights should dll converge to the scaling factor

of 6.123.

For Case 2 and M = 0.1; neither WDFI or WDF2 were able to filter the N(0.1) noise
to produce the Plant output. This was true for both an independant and constant bin /I. For

both filters, the Walsh tap adaptation tracks were excessively noisy and, with the exception

of the zero sequency bin tap, failed to converge. Figures 4.34 thru 4.39 show the adaptation

tracks for the WDF2 filter bin taps flo(k), H 5(k), and H2(k): as well as the respective input
signal transfoim component to desired signal transform component ratios. These three bin

taps iepresent best, typical. and worst case in terms of adaptation noise present.

As the figures show, tap I1o(k) has the least amount of adaptation noise. Comparing
the bin ratios for the three taps (Figures -1.35, 4.37, and -1.39) clearly shows that the

adaptation noise for each tap is proportional to the variation in the bin ratio, where the nth

bin ratio is defined

Ratio,(k) - X,(k) (,1.17)
D(k)

where k represents the block index and k = 0, 1, ... The perturbation in Figure 4,37 at

approximately k = 110 is due to i, very small D 5 (l10) value. The ratio variation is due

'1-23

to the fact that the filtered noise is also Gaussian but uncorrelated with the N(0,1) input,

so the resulting spectrums from block to block will differ between input and desired. The

tap adaptation tracks and bin ratios shown for the WDF2 filter are representative of results

produced by the WDF1 filter.

20,

A 15
mp 10

l5
0

t -5
U -10
d -15
e I-20

0 50 100 150 200
Block Index, k

Figure 4.34 WDF2 filter tap Ho(k): Ho(k) adaptation track for noise input and filtered
noise desired signal using constant bin p and M = 0.1.

6 I I

4
R 2
a

t0 A
-20

-4
-6 I

0 50 100 150 200
Block Index, k

Figure 4.35. WDF2 Ratioo(k). This is the ratio of the noise input 8-point DWT bin 0 and
the filtered noise desired signal 8-point DWT bin 0 versus k.

4-24

A 10
m
p 5

0
t
U -5
d
e -10 I

0 50 100 150 200
Block Index, k

Figure 4.36. WDF2 filter tap H.5(k): H5(k) adaptation track for noise input and filtered
noise desired signal using constant bin pt and M' = 0.1.

6
4

R 2

t A A A

-2 VyY
0

-
-6

0 50 100 150 200
Block Index, k

Figure 4.37. \,WDF2 Ratios5(k). This is the ratio of the noise input. 8-poinit DWT bin 5 and
the filtered noise desired signal S-point DWT bin .5 versus k.

4-2.5

A 10 I

p 5

e -10

0 50 100 150 200
Block Index, k

Figure 4.38. WDF2 filter tap 112 (k): 11 2 (k) adaptation track for noise input and fiitered

noise desired signal using constant bin it and M =0.1.

6
4

R. 2

-2
0

-4
-6 __

0 50 100 150 200
Bllock Index, k

Figure 4.39. WDF2 Ratio2 (k). This is the ratio of the noise input S-point DWNT oin 2 and
the filtered noise desired signal S-point DWT bin 2 versus k.

*1-26i

4.4 Single Tap Tune-domain Filter Tesl

The result of Verification Test 2 (See Section 4.3) prompted the testing of a single
tap time-domain filter. The hypothesis is that the dynamics of a single 'ap timc-domain
LMS filter (See Equation 2.34) are an effective model of the dynamics of ,i.t: \VDF1 and

WDF2 real bin taps. This hypothesis is important becaus, :t provides some n -asure of

predictability for the \VDF1 and WDF2 filtering performance. Figure 4.40 shows the test
configuration. N(0, 1) noise is filtered by a singe tap Infinite Impulse Response (1IR) filter

and a constant is added to the result.

The purpose of the noise filtering procedure is to create a signal with a slowly varying
random envelope. The resultant signal serves as the input signal. x, (See Figure 4.41). to a
single tap time-domain adaptive LMS filter. The desired signal is a constant and the gain
constant was it = 0.01. Figure 4.42 shows the ho(i) tap adaptation track versus the discrete
time index i and Figure 4.43 shows the desired signal to input signal ratio, RatiodW(i), versus

i. Clearly, the adaptation track of the filter tap is characteristic of the noiselike variation of

Ratiod.,(i). This result is similar to the plots presented in Section -1.3 and therefore supports

the hypothesis of this test.

3 6
IV(0. 1) + + xi-

Z-I-
+h 0 (i)

0.8

Figure 4.40. Single Tap Tine-domain Filter Configuration.

4'-27

V 0 -2

-4
-6-8

0 100 200 300 400 500 600 700 800 900
Time Index, i

Figure ,4.41. Single Tap Time-domain Filter Test: x,. This is the filtered noise input.

3

m 2
P I11

i 0
t -1 -
U
d -2

e -3 f t

0 100 200 300 .100 500 600 700 800 900
Time Ind'x,

F-igurc 4.42. Single Tap Tune-domain Filter Test: ho0(). This is the ho(i) adaptation track
versis i.

t. 0 L

0 -5 i

_ 10 , , , , ,, I

0 100 200 300 400 500 600 700 800 900
Time Index. i

Figure 4.43. Single Tap Time-(lomain Filter Trest: Ratiold(i). This is the ratio of the
desired constant. to the filtered noise input signal versus i.

4-28

4.5 Chapter Summary

The main purpose of this chapter was to verify the WDF1 and \VDF2 software inmple-

mentations. Two tests were used.

The first test used a periodic input and desired signal (See Sections 4.2.3.2 and 4.2.4.2).
The input DWT for each block consisted of components that were all equal to 1. The
desired D\VT for each blc,- consisted of distinct magnitude nonzero compunents. In filtering
the input, the Walsh-domain taps for both filters converged to the corresponding desired
transform component values, i.e. the theoretical solution.

The second test validated the TDF and FDF filters, which are used for comparison

purposes in this thesis (See Section 4.3). This test used N(O,1) noise as the input signal
and a Plant-filtered version of the signal as the desired. Theoretically, the TDF and FDF
filter time-domain impulse responses should converge to the Plant tap values, givel: that the
Plant was a 4 tap FIR filter. In both cases the experimental results matched the theoretical

prediction.

The last test was also used on the WDF1 and WDF2 filters as a nonperiodic signal
test (See Section 4.3). Both the WDF1 and WDF2 filters perform dyadic convolution and
therefore were not expected to achieve the impulse response of the Plant, which neither did.
Two FIR filter cases were used. The first was a trival case, with only the h0 tap nonzero
the Walsh-domain taps were expected to converge to ho. Since the DWT of N(O,1) noise
produces a DWT with a nonzero spectral component at every position, and the desired

spectrum for this case is an h0 scaled version of the input. Experimentally, both filters
achieved the theoretical solution.

For the second case, all four FIJI taps were nonzero (See Section 4.3). Experimentally
lhe WDF1 and WDF2 filters were unable to filter the input to produce the desired signal. An
analysis of t he bin tap adaptation tracks showed excessive adaptal ion noise that coi responded
with the amount of fluctuation that exists in the ratio of the corresponding input transfo in
bin to the desired transform bin from block to block. This prompted a single tap timne-
domain filf.er test (See Stction .1.4). This test was not. compiehensive but clearly indic,,ted
that the adaptation dynamics of Ihe \VDFI and WDF2 Walsh-domain taps can be genm ally

modeled by t.,e adaptation dynamics of a single tap time-domain filter.

In summarN, the tests in this chapter verified the software implementations of the

\VDFI and WDF2 filters. The second test did expose a possible filtering limitation, I lie
Walsh-domain tap adaptation tacks ire disrupted by t iansform (omponent iati) fluctuati.is

41-29

between corresponding input and desired DWT components. The next chapter presents the

time-shifted sinusoidal and rectangular signal tests used to establish the filtering performance

of the Walsh-domain filters relative to each other and the TDF and FDF filters.

41-30

V. Filter Testing and Comparison

5.1 Introduction

The previous chapter discussed the software implementation and verification of two

Walsh-dom,i adaptive filters: WDF1 and WDF2. Now that software verification has been

accomplished, a relative measure of performance must be established between WDF1 and

WDF2. Also, a relative measure of performance must be established between the two Walsh-

domain filters and other adaptive filters. Therefore, there are two major goals:

1. The WDF1, WDF2, TDF, and FDF filters are compared in terms of convergence speed

and output error using time-shifted noiseless and noisy periodic signals (Section 5.2).

2. A processi.g speed performance comparison is made between the WDF1,WDF2, TDF,

and FDF filters. (Section 5.3).

5.2 Time-shifted Signal Tests

The purpose of this section is to investigate the effects of the DWT's lack of time-shift
invariance (Section 2.1.3) on the filtering abilities of the WDF1 and WDF2 filters. Four

signal tests are used to conduct the investigation:

1. Signal Test 1 (Section 5.2.1) uses a noiseless periodic rectangular signal as the input

signal.

2. Signal Test 2 (Section 5.2.2) uses a noisy periodic rectangular signal as the input signal.

3. Signal 'Pest 3 (Section 5.2.3) uses a noiseless periodic sinusoidal signal as the input

signal.

4. Signal Test ,4 (Section 5.2.4) uses a noisy periodic sinusoidal signal as the input signal.

For each of the two periodic signals. input and desired arc derived from the same signal

and the signal period is 16 data points. For the noiseless case. the input is shifted relative

to the desired signal. For the noisy case. Additive White Gaussian Noise (N(0,1)) is added

to the shifted or unshifted signal to create the input. Progiessive input sample shifts are

used for each case with a 4 sample shift relative to the desired signal being the maximum.

In each test, the signal set is filtered by the WDFI, WDF2. TDF, and the FDF filters. The

.5-1

TDF filter uses 16 taps while the WDF1, WDF2, and FDF filters use a 16-point block size
(N = 16). For periodic signals, set rig N equal to the period of the signal results in the
same input spectrum for each block processed. The filters are then compared in terms of
their convergence speed and the amount of error between the filter output and the desired

signal tor the last 6 blocks processed, which would be 96 output samples.

The number of weight updates required to achieve 10% of the normalized mean-square-
error (NMSE) serves as the criteria for the convergence speed comparison. MSE learning
curves for signal tests 1 and 3, are derived by squaring the output error. The MSE learning
curves for signal tests 2 and 4 are derived using 100 data files with the noise components

uncorrelated between files and the ensemble noise components being N(U,1) samples. The

MSE learning curves for all 4 signal tests are normalized by the desired signal power.

5.2.1 Signal Test I This test evaluates the WDF1 and WDF2 discontinuous signal

filtering performance relative to the TDF and FDF filters. A rectangular signal is used as a
simple discontinuous signal representative. The hypothesis is that the XValsh-domain filters
will converge faster and produce less error filtering rectangular signals than the FDF and

TDF filters and that shifting the input will degrade the Walsh-filter performance. There are

two attributes of the DWT which suggest this hypothesis:

1. The DWT of a discontinuous signal produces fewer spectral terms than the correspond-

ing DFT spectrum (See Section 2.1.2.2).

2. The DWT spectrum is not time-shift invariant (See Section 2.1.3).

The input signal used in the test is depicted in Figure 5.1. This signal functions as
the input and desired signal in this test. A 992 sample datasize is used because it produces

an integer number of 16-point blocks, as opposed to a datasize of 1000 which does not.
The input signal was time-shifted to assess time-bhift affects on filter err,)i performance and

conergence speed. An incremental shift of 1 sample is made on each filter run ielative to the
desired signal, with a maximum relative shift of -t samples. For the remainder of this test,

the input signal for an n-point relative shift is designated the n - shift input. Filter output
results for the I - shift, 3 - -shift, and 4 - qhift input are presented as they represent best,

typical, and worst case, in that order.

5-2

10

V 0 1F I il [

0 10 20 .30 40 .50 60 70 80 90
Time Index,

Figure .5.1. Signal Test 1 Rectangular Waveform.

5.2.1.1 Noiseless I - shift Results. The 1 - shift signal pair is depicted in

Figure 5.2. The filter configuration used for all 4 filters is specified in Table .5.1. Figures .5.3,

5.4. 5.5, and 5.6 show the error for the last 96 output samples produced by each filter.

Clearly, the Walsh-domain filters produce less error than the FDF and TDF filters for the

1 - shift input. The two Walsh-doinain filters produce zero error for the last 96 output

samples.

10
Input -

Dtsired J

-10 1
0 10 20 30 40 -0 60

Time Index. i

Figure .5.2. Signal Test 1: 1 - shift filter inputs. This is the noiseless I -shift rectangular
input and desired signal.

Paramcter Scttinq Ii
Block Size 16

I Misadjustment 0.0-5J
Datasize 992 Jj

Table 5.1. Signal Tes' I: 1 - sAift input filter settings

-).I

2 i I I

1.5
1

0.5
V 0

-0.5
-1

-1.5
- 2 I I I I I I I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.3. Signal Test 1: WDFI :ter output error for 1 - shift input. This is the WDF1
output error for the last 96 output samples using M = 0.5.

2
1.5

0.5
v 0

-0.5
-1

-1.5
-2 , I I , I I I I

900 910 920 930 940 950 960 970 980 990
Time Index. i

Figure 5.4. Signal Test 1: WDF2 filter output error for 1 - shift input. This is the WDF2
output error for the last 96 output samples using Al = 0.5.

5-5

2 I I I i I I I

1.5
1

v 0o v A A v v A- V v "v-A V -V

-0.5

-1.5
-2 I I I I I I I !

900 910 920 930 940 950 960 970 980 990
Time 'ndex, i

Figure 5.5. Signal Test 1: TDF filter output error for 1 - shift input. This is the TDF
output error for the last 96 output samples using M = 0.5.

1.5
I

0.5
V 0

-0.5
-1

•-1.5
-2

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.6. Signal Test 1: FDF filter output error for 1 - shift input. This is the FDF2
filter output error for the last 96 output samples using Al = 0.5.

5- 6

5.2.1.2 Noiseless 3 - shift Results. The 3 - shift signal pair is depicted in

Figure 5.7. The filter configuration used for all 4 filters is specified in Table 5.2. Figures 5.8,

5.9, 5.10, and 5.11 show the error for the last 96 output samples produced by each filter.

Clearly, the Walsh-domain filter output error is less than the TDF and FDF filters for the

3 - shift input. The WDF1 and WDF2 3 - shift output error is greater than the 1 - shift

result.

10

Input -
Desired

V

0

-5

-10

0 10 20 30 40 50 60
Time Index, i

Figure 5.7. Signal Test 1: 3-shift filter inputs. This is the noiseless 3-shift rectangular
input and desired signal.

Parameter Selling
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.2. Signal Test 1: 3 - shzft input filter settings

5-7

1 I I I I I

0.8
0.6
0.4
0.2

V 0
-0.2
-0.4
-0.6
-0.8

- 1 r I I I I I I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.8. Signal Test 1: WDF1 filter output error for 3 - shift input. This is the WDF1
output error for the last 96 output samples using M = 0.1.

I i i i i

0.8
0.6
0.4
0.2

V 0
-0.2-0.-4
-0.6
-0.8-1 I I I 1 I I ! I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.9. Signal Test 1: WDF2 filter output error For 3- shift input. This is the WDF2
output error for the last 96 output samples using M = 0.1.

5-8

0.8
0.6
0.4
0.2

V 0 4,- V4 ,,%. IV .6v V, . 4 v ,
-0.2
-0.4
-0.6
-0.8-1 I I I I t I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.10. Signal Test 1: TDF filter output error for 3 - shift input. This is the TDF
output error for the last 96 output samples using M = 0.1.

0.8 -
0.6-
0.4
0.2

V 0
-0.2 I v r
-0.4
-0.6
-0.8

900 910 920 930 940 950 960 970 980 990
Time lidex, i

Figure 5.11. Signal Test 1: FDF filter output error for 3 - shift input. This is the FDF
filter output error for the last 96 output sanples using M = 0.1.

5-9

5.2.1.3 Noiseless 4 - shift Resr'ts. The 4 - shift signal pair is depicted in

Figure 5.12. The filter configuration used for all 4 filters is specified in Table 5.3 while

Figures 5.13, 5.14, 5.15, and 5.16 show the error produced for the last 96 output samples.

Figures 5.13 and 5.14 show that the Walsh-domain filters were unable to filtei the 4 - shift

input.

10 ' i I I
Input --

Desired -'1 I- I
v 0

-5 LL

0 10 20 30 40 50 60
Time Index, i

Figure 5.12. Signal Test 1: 4-shift filter inputs. This is the noiseless 4-shift rectangular
input and desired signal.

Parameter Setting
Block Size 16

KMisadjust.ment 0.1
Datasize 992

Table 5.3. Signal Test 1: ,1 - shift filter settings

5-I0(

-5 i L i Li i E i i 1ni

-10 1 i I I I I I - j

900 910 920 930 940 950 960 973 980 990
Time Index, i

Figure 5.13. Signal Test 1: WDF1 filter output error for 4-sihift input. This figure depicts
the WDF1 output error for the last 96 output samples using M = 0.1.

10----

V 0

-10 I I I " I t I
900 910 920 93P " 950 9Gu 970 980 990

Tmle Index, I

Figure 5.14. Signal Test 1: WDF2 filter output error for 4- shift input. This is the WDF2
output error for the last 96 output samples using M = 0.i.

5-11

10 ------------- r - r
5

V o

-5

-10 ' ! P.
900 910 i b 930 940 950 960 9;0 980 99

Time Index, i

Figure 5.15. Signal Test 1: TDF filt .)utput '.r:or for 4 - shift input. This is the TDF
output error I'-r the la ., output saniples using M = 0.1.

V 9 10i

-10i I .I

990 910 920 930 940 950 960 970 980 990
Time lndox, i

Figure 5.16 Signal Test 1: FDF filter output error for 4 - shift input. This is the FDF
output error for the last 96 output samples using A] = 0.1.

5.2.1.4 Signal Test 1 Analysis. For each of the signal sets in Signal Test 1,

the three block processing filters perormed optimally u.sing a constant ti value, in terms of

rninimizing the error over the last 9G samples of the 992-point data sCt. Using an independent

it value for each bin slowed the convergence speed of the filters relative to using a co;.-tnt

PI.

Less error occurs for d constant p due to the fact that Pb,,,, (See Section 4.2.2) is

less than the Pb,,, values. Therefore, the independant bin gain I'.,!?nts, jt,, are less than

the constant it. The Watlsh-domain filteis' convergence speed decreased as the reference

shift increased. The TDF and FDF filter-,, however, produced output that was essentially

5-12

m Shift frror Signal Power (Watts)

I TDF FDF WDF1 WDF2

0.05 1 5.531. - 02 3.48E - 01 0 0
1 0.05 2 5.04E - 02 3.33E - 01 0 0

-1 3__.3, 03 5.45E -02 1.18E --4" 1.31E -04
0.1 4 131 5.44E 02 25 25

Table 5.4. Signal Test 1:Error signal power for the last 9': samples.

in 'ariant to the samplt si ,it. The Walsh-domain filters co vergc more slowly as tile shift

increases because the input spectrum components become, reasingly distinct with respect

to the desi'ed signal spectru.m (See Section A.3).

Error Performance. For the 1 - shift and 2 - shift inputs, the WDF1

and WDFU2 filters were able to produce an output that exactl3 matched the desired signal

(Figures 5.3 and 5.4). Conversely, the FDF and TDF filters were still converging at the end

of the data set with the TDF filter converging more rapidly (Figures 5.5 and 5.6). Table 5.1

specifies the filter configuration. The FDF filter converged more slowly because the input

frequency spectrum is more complex than the sequency spectrum.

Table 5.4 contains the -rmalized error signal power for each fiter. generated from the

last 96 error samples, produ ed in each of the four cases. Compa,o.,iielv. for the first. three

saml)e shifts, the \Valsh-domain filters' error performances were ident.,.,i For tile - - shift

input, the TDF filter performed slightly better than the FDF filter while the WDFI -nd

WDF2 filters were unable to filter the 4-sample shifted rectangular signal as iigurc, "

and 5.13 show. This is due to the fact that !he Walsh-domain spectrums for the inpu-, nd

,! 2ired are zero magnitude with the exception of one component. File spectral value for the

S,, it- is not located in the same sequency bin as the desired.

Convergence Speed Comparison. The results of signal test I are summna-

rized in Tatie 3.5 in terms of the number of weight updates required to converge. This

table shov s in gencral that th.: blockprocessing filters require fewer weight updatco for this

test. With ti.e exception of the 4 - shift input, the Walsh-domain filters also required the

least numLer of weight updates. The Walshldomain filter entries for the . - s.iIft input

are indicated in the table as "dnc"; indicating "did not converge". Cleadly, tile WDFI and

XVI)F2 performances were equivalent.

5-13

M Shift Number of Weight Updates
TDF FDF WDF1 WDF2

0.05 1 297 37 2 3
0.05 2 320 40 6 6
0.1 3 168 21 11 12
0.1 4 168 21 dnc dnc

Table 5.5. Signal 1-t l:Number of weight updates to converge.

Parameter Set?!i
Block Size 16.
Misadjustment 0.05 f
Datasize 992

Table 5. S.,.al Test 2: 0 - shift filter settings.

5.2.2 Signal Test 2 Signal test 2 is an extension of Signal Test 1 (See Section 5.2.1)

and evaluates the WDF1 and WDF2 noisy rectangular signal filtering performance relative

to the TDF and FDF filters. The WDF1 and WD;2 filter error should increase significantly,

relative to the Signal Test 1 results. based on the testing accomplished in Sections 4.3 and

4.4. The input signal used in the test is the signal in Figure 5.1 with noise added. This

signal serves as the input and desired signal in this test. The filter input is simply a shifted
version of the desired signal. The maximum shift %\ai 1 samples. For the remainder of this

test, the input signal for an n-point relative shift is designated the n - shift input. Filter

output results are presented for the 0 - sh ift, 3 - shift, and 4 - shift input cases. as they

represent best, typical, and worst case.

5.2.2. 1 Noisy 0 - shift Results. The filter input signal and desired signal are

both depicted in Figure 5.17. The filter configuration used for all 4 filters is specified in

Table 5.6 while Figures 5.18, 5.19, 5.20, and 5.21 show the error produced by each filter for
the last 96 output samples. The WDF1 and W'V72 error is blocky due to the rectangular

nature of the Discrete Walsh functions. Clearly, th - \Valsh-donain filtei error is less than

the TDF ani FDF error.

5-I.

10 I i I I T I I i I l

5A&

V 0

-10 I I I I I I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.17. Signal Test 2: 0 - shift inputs. This is the last 96 samples of the noisy
0 - shift rectangular input and desired signal.

0.5
V 0

-0.5 i

-2

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.18. Signal Test 2: WDF1 filter output error for 0-shift input. This is the \VDFI
output error for the last 96 output samples using AI = 0.05.

5-15

1.5
1

05
v 0

-o 5
-1

-i2

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.19. Signal Test 2: WDF2 filter output error for 0-shift input. This is the WDF2
output error for the last 96 output samples using M = 0.05.

1.5

0.51 A A k
v 0

-0.5 v 9

-25

900 910 920 930 9,10 950 960 970 980 990
Time Index. i *

Figure 5.20. Signal Test '2: TDF filter output error for 0 - shift input. Thills is tie TDF
output error for the last 96 output samples using Al = 0.05.

5-16

2
1.5

-1

-1.5 9 v

900 910 920 930 940 950 960 970 980 990
Trime Index,

Figure 5.21. Signal Test 2: FDF filter output error for 0 - shiift input. This is the FDF
output error for the last 96 output samples using Af = 0.0-5.

5-17

5.2.2.2 Noisy 3 - shift Results. The 3 - ilift signal pair is depicted in Fig-
ure 5.22. The filter configurat.on used for all 4 filters is specified in Table 5.7 whle Fig-

ures 5.23, 5.24, 5.25, and 5.26 show the error for the last 96 output samples produced
by each filter. Clearly, the Walsh-domain filter error has increased relative to the 0 - shift

results.

10 i

- 1 0 , 1 - I I 1 ! !

900 910 920 930 940 950 960 970 980 990
Tinic Index. i

Figure 5.22. Signal Test 2: 3 - shift filter inputs. Thim is the last 96 samples of the noisy
3 - shift rectangular input and desired signal.

Paramieir Sctinq ti
Block Size 16 1I
.Misadljust ment 0.1 l

1! Datasize 992 Ii

lable 5.7. Signa; 'est 2: 3 - shift filter s'ttit1gs

:5. IS

1.5

0.5
V 0

-0.5 Li
- 1 ---.-

-1.5
-2 1 i L

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.23. Signal Test 2: WDF1 filter output error for 3- shzft input. This is the WDF1
output error for the last 96 output samples using M = 0.1.

1.5

0.5
V 0

-0.5
-1

-1.5

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.24. Signal Test 2. WDF2 filter output error for 3 - shift input. This is the WDF2
output error for the last 96 output samples using Al = 0.1.

5-19

1.5

0.5 A AA
-0.5

-1.5
- 2I I I I I I I I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.25. Signal Test 2: TDF filter output error for 3 - shift input. This is the TDF
output error for the last 96 output samples using Al = 0.1.

5-20

Parameter Setting
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.8. Signal Test 2: 4 - shift filter settings

2
1.51

V 0 '~Yvp VY j
-0.5
-1

-1.5
-2 I I I I 9

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.26. Signal Test 2: FDF filter output error for 3 - shift input. This is the FDF
output error for the last 96 output samples using M = 0.1.

5.2.2.3 Noisy 4 - shift Results. The noisy 4 - shift signal pair is depicted

in Figure 5.27. The filter configuration used for all 4 filters is specified in Table 5.8 while

Figures 5.28, 5.29, 5.30, and 5.31 show the error for the last 96 output samples produced

by each filter. As expected the Waslh-domain filters are unable to filter the 4 - shift signal

(See Signal Test 1).

5-21

10 I I I i I

V 0 -

-5 L U

-10 I 1 1 i 1 1 1 1

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.27. Signal Test 2: 4 - shift filter inputs. This is the last 96 samples of the noisy
4 - shift rectangular input and desired signal.

0 1 1 1 1 , -, -

v 0

-5 U L

-10 1 1 1 1 1 1 1 11

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.28. Signal Test 2: WDF1 filter output error for 4 - shift input. This is the WDFI
output error for the last 96 output samples using Al = 0.1.

5-22

5

V 0

-5

- 10 1 1 1 1 1 1 1 1 11I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.29. Signal Test 2: WDF2 filter output error for 4- shift input. This is the WDF2

output error for the last 96 output samples using M = 0.1.

10 i -, , i

5

V 0 --A ,

-5

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure .5.30. Signal Test 2: TDF filter output error for 4 - shift input. This is the TDF
output error for the last 96 output samples using M = 0.1.

5-23

10 , I i

5-

v 0- AA

-5

-10 . I I ! I
900 910 920 930 940 950 960 970 9,. 990

Time Index, i

Figure 5.31. Signal Test 2: FDF filter output error for 4 - shift input. This is the FDF
output error for the last 96 output samples using M = 0.1.

5.2.2.4 Signal Test 2 Analysis. For each of the signal sets in Signal Test 2,

the three block processing filters performed optimally using a constant yu value. Using an

independant p value for each bin slowed the convergence speed of the filters relative to using
a constant it (See Signal Test 1). The FDF filter did .,ot converge when an independant .u

was used for each bin and all four filters converged more slowly as the reference shift was

increased.

Error Performance. Considering the 0 - shift and 1 - shift cases, the
Walsh-domain filter outputs were able to reasonably match the desired signal. The error

associated with the WDF1 and WDF2 filter output was nominal and primarily consisted of

a constant magnitude with occasional jumps corresponding with noise spikes in the input.

The WDF2 response to the noise spikes was less pronounced than in the WDF1 case so that

there was less variation in the error (Figures 5.19. 5.18). Conversely, the FDF and TDF

filters were able to accomplish the necessary time shift, but unable to remove the noise from

the input. The FDF filter was still converging at the end of the data set. This analysis is

based on the filter configuration specified in Table 5.6.

The 2 - shift and 3 - shift inputs increase the output error for the Walsh-domain

filters significantly as compared to the 0 - shift and 1 - shift inputs. The error signal is

characteristically the same except larger in amplitude by a factor of 3 in the 2 - shift case

and 4 in the 3 - shift case. The TDF and FDF filter error is characteristically the same and

shows no appreciable change in amplitude. This analysis is based on the filter configuration

specified in Table 5.7.

5-24

Al Shift Error Signal Power (Watts)
TDF FDF IWDF1 WDF2

0.05 0 4.88E - 01 7.48. -- 01 1.65E - 01 6.01E - 02
0.05 1 4.83E - 01 7.31E - 01 2.20E - 01 8.46,r 02
0.05 2 3.64E - 01 3.77E - 01 4.99E - 01 1.86E 01
0.1 3 4.72E - 01 5.37E - 01 1.49 6.49E -01
0.1 4 1 3.85E- 01 4.24E- 01 24.97 24.99

Table 5.9. Signal Test 2:Error signal power for the last 96 samples.

Table 5.9 contains the normalized error signal power for each filter for the last 96 error

samples produced in each of the five noisy input cases. Comparatively, for the 0 - shift,

1 - shift, 2 - shift, and 3 - shift cases, the WDF2 filter was better than the WDF1 filter

in terms of minimizing the MSE. Compared to the TDF and FDF filters, the WDF2 filter

performed better in terms of MSE for all four signal sets while the WDF1 filter performed

better in terms of MSE for all but the three sample reference shift. The WDF1 and WDF2

filters were unable to filter the noisy 4 - shift rectangular signal as Figures 5.29 and 5.28

show. The input spectrum in this case has no zero valued components due to the addition

of the N(0,1) ;,oise to the input.

The inability of the WDF1 and WDF2 filters to filter the noisy 4 - shift rectangular

signal arises fiom the fact that the spectrum components vary from block to block due to

the noise. 'ailiation in the ratio of the input spectrum values to the desired spectrum values

disrupts the tap adaptation (See Sections 4.3 and 4.4). The particular bin of interest for

WDF1 is bin 1, because the only nonzero desired spectral valuc is the sequency 1 term (See

Section A.3). The particular bin of interest for WDF2 is bin 3, because the only nonzero

desired spectral value is the sequency 3 term (See Section A.3). Figures 5.32 and 5.33 show

the bin I tap and Ratiol(k) (See Equation 4.17) for \\DF1. Figures 5.34 and 5.35 show

the bin 3 tap and Ratio3 (k) for WDF2.

5-25

A
mn 0.2

P 0.1

t -0.1
U-
d -0.2
e

0 10 20 30 40 50 60
Block Index, k

Figure 5.32. WDF 1. Bin Tap H, (k). This figure depicts the WDF1 H, (k) adaptation track
for the noisy 4 - shift rectangular signal.

A.
In 0.2

P 0.1

S0 10 20 30 \40 50 60ivU I

Block Index, k

Figure 5.33. WVDF1 Ratio, (k) This figure depicts the WDF1 spectral bin 1 input to desired
ratio.

5-26

A
in 0.2
P 0.

S -0.1
U

d -0.2
e

0 10 20 30 40 50 60
Block Index, k

Figuire 5.34. WDF2 Bin Tap H3 (k). This figure depicts the WDF2 H3(k) adaptation track
for the noisy 4 -- shift rectangular signal.

A
m 0.2

P 0.1

0
t -0.1
11
d1 -0.2

0 10 20 30 40 50 60
Block Indlex. k

Figurc- 5.35. WDF2 Ratioa3(k). This figure depicts the WDF2 spectral bin .3 input to desired
ratio.

5.27

M Shift Number of Weight Updates
TDF JFDF WDF1 WDF2

0.01 0 329 43 1 2

0.05 1 360 45 3 3
0.05 2 134 24 3 3
0.1 3 192 25 14 12
0.1 4 201 25 dnc dnc

Table 5.10. Signal Test 2: Number of weight updates to converge

Convergence Speed Comparison. The results of signal test 2 in terms of
number of weight updates required to converge are reflected in Table 5.10. The table shows

in general that the blockprocessing filters require fewer weight updates for this test. Also,
the Walsh-domain filters required the least number of weight updates, with the exception of

the 4 - shift case. The WDF1 and WDF2 filteis had similar performance for the 1 - shift

and 2 - shift cases. The WDF1 filter was able to achieve coavergence (i.e. 10% of the
NMSE) after a single weight update whereas the WDF2 filter required two. The WDF2

filter outperformed the WDF1 filter on the 3 - shift case, only requiring twelve weight

updates whereas the WDFI filter required fourteen. The Valsh-domain filter entries for the
4 - shift input are indicated in the table as "dnc": indicatin', "did not conveige".

5.2.3 Signal Test ? This test compares the WDFJ and WDF:2 continuous signal

filtering performance against the TDF and FDF filters. A simple sinusoidal signal is used

as a continuous signal .'epresentative. The h-pothesis is that the Walsh-domain filters will

converge aic-e slo\%lI and produce more error filtering the sinusoidal signal than the FDF
and TDF filters and '.iat shifting the input will degrade tlh. \,.Ish-filter performance. There

are two rttributcs of the DWT which suggest this lIypc-th,' :

1. The DWT of a continuou.-, signal produces more spect ral terms than the corresponding

DFT spectrum does (See Section 2.1.2.2).

2. The l)WT spectrum is not time-shift invariant (See Section 2.1.3).

The input signal used in the test. is depicted in Figure 5.36 and serves as the input

and desired signal in this test. .\ 992 sample datmsize is tiscd because it produces an integer

number of 16-point blocks, as opposed to a datasize of 1000 which does not. The input

.5-28

V 0 f\

0 10 20 30 40 50 60 70 80 90
Time Index, i

Figure 5.36. Signal Test 3 Sinusoidal Waveform.

signal was time-shifted to assess time-shift affects on filter error performance and convergence

speed. An incremental shift of I sample is made on each filter run relative to the desired

signal, with a maximum relative shift of 4 samples. For the remainder of this test, the input

signal for an n-point relative shift is designated the n - shift input. The results of the

4 - shift case are presented be-ause it was representative of the results produced for all the

shift cases. The purpose of this test is to evaluate the WDFI and WDF2 sinusoidal signal

filtering performance in relation to the TDF and FDF filters. The input signai used in the

test is depicted in Figure 5.36. This signal functions as the input and desired signal. An

incremental shift of 1 sample is made on each filter run relative to the desired signal, with

a maximum relative shift of 4 samples. Only the results for the four sample reference shift

are presented because it was representative of the results produced for all the shift cases.

5.2.3.1 Noisclcss 4 - shift Results. The sinusoidal 4 - shf I signal pair is de-

picted in Figure 5.37 and the filter configuration used for all 4 filters is specified in Table 5.11.

Figures 5.38, 5.39, .5.40. and 5.41 show the error for the last 96 output samples produced

by each filter.

.5-29

Parameter Setting 11lllock Size 16
Misadjustment 0.1
Datasize 992 j

Table 5.11. Signal Test 3: 4 - shi'ft filter settings.

V 0

-5\' \A

0 10 20 30 40 .50 60
Time Index,

Figure 5.37. Signal Test 3: 4 - shi'ft filter inputs . This is the noiseless 4 - shift sinusoidal
input and desired signal.

0.2

-0.2-

-0.4-
-0.6-
-0.8 ____________________________

-1
900 910 920 930 940 9.50 960 970 980 990

Trime Index, i

Figure 5.38. Signal Test 3: WDFI filter output error for 4 -,,hift input. This figure depicts
the WDF1 output error for the last 96 output samiples using Al = 0.1.

0.8
0.6-0.4 "-0.21v 7

-0.4 -
-0.6 I
-0.8 -

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.39. Signal Test 3: WDF2 filter output error for 4-shift input. This is the WDF2
output error for the last 96 output samples using M = 0.1.

1 I i i I i l

0.8 - I
0.6
0.4
0.2

V 0
-0.2
-0.4 --0.6-
-0.8

900 910 920 930 940 950 960 970 9' 9;90
Time Index, i

Figure .5.40. Signal Test 3: TDF filter output error for 4 - shift input. This is the TDF
output error for the last 96 output samples using A! = 0.1.

5-3 1

1 , I I I I I I I

0.8
0.6
0.4 ,
0.2 -V 0-0.2 -

-0.4 !
-0.6 3
-0.8-1 ! I I I I I ! I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure .5.41. Signal Test 3: FDF filter output error for - - shift input. This is tile FDF
output error for the last 96 output samples using l = 0.1.

5-32

5.2.3.2 Signal Test 3 Analysis For the two Walsh-domain filters, an indepen-

dant gain constant p for each bin was optimum in terms of minimizing the output error

while a constant /. value was optimum in terms of minimizing the error for the FDF filter

in all cases. Figures 5.38 thru 5.41 show the output error over the last o6 samples for each

filter. The optimum y algorithm was used.

Error Performance. The results of test 3 in terms of error signal power,

normalized to a one ohm resistor, for the last 96 error samples are contained in Table 5.12.

Results for all sample shift cases produced indistinguishable squared error plots. The TDF

and FDF filters produced a zero error output as Figures 5.40 and 5.41 show. The WDF1

filter error (Figure 5.38) was nominal compared to the WDF2 filter error (Figure 5.39).

Convergence? Speed Comparison. Table 5.13 summarizes the results of sig-

nal Test 3 in terms of number of weight updates updates required to converge (i.e. reach

10% of normalized mean-square-error). Entries with an * designate results determined using

an Aependant bin it value. The table reflects that the blockprocessing filters, with the

exception of WDF2 for shifts 3 and 4, required fewer weight updates to converge. The FDF

filter was the quickest in terms of weight updates required; only needing two weight updates.

The two Walsh-domain filters performed equally for the first two reference shifts; requiring

five weight updates for the 1 - shift input and eight for the 2 - shift input. The WDF1

filter required less than half the number of weight updates required by the WDF2 filter for

the 3 and 4 - shift signals.

M Shift Error Signal Power (Watts)

TDF FDF WDF1 WDF2
0.1 1 0 0 5.90E - 05 3.33E - 02
0.1 2 0 0 5.90E - 05 3.33E - 02
0.1 3 0 0 5.90E - 05 3.33E - 02
0.1 4 0 0 5.90E - 05 3.33 - 02

Table 5.12. Signal Test 3:Error signal power for the last 96 samples.

.5-:33

M Shift Number of Weight Updates
-rDF FDF WDF1 WDF2

0.1 1 21 2 5 5
0.1 2 21 2 8 8
0.1 3 21 2 10* 22*
0.1 4 15 2 10 1 22-

Table 5.13. Signal Test 3: Number of weight updates to converge.

5-34

5.2.4 Signal Test 4 Signal test 4 is an extension of Signal Test 3 (See Section 5.2.3).

This test evaluates the WDF1 and WDF2 noisy sinusoidal signal filtering performance in

relation to the TDF and FDF filters. The WDF1 and WDF2 filter error should increase

significantly relative to the Signal Test 3 results. This is based on the testing accomplished

in Sections 4.3 and 4.4. The desired signal used in the test is the signal in Figure 5.36 and

the input is the same signal with noise added. The filter input is simply a shifted version of

the desired signal. The maximum shift was 4 samples. For the remainder of this test, the

input signal for an n-point relative shift is designated the n - shift input. Filter output

results are presented for the 0 - shift, 2 - shift, and 4 - shift input cases, as they represent

best, typical, and worst case.

5.2.4.1 Noisy 0-shift Results. The sinusoidal 0-shift signal pair is depicted

in Figure 5.42 and Table 5.14 specifies the filter configuration. Figures 5.43, 5.44, 5.45,

and 5.46 show the error for the last 96 output samples produced by each filter using the

optimum p calculation method.

Parameter Selting
Block Size 16
Misadjustment 0.1

Datasize 992

Table 5.14. Signal Test 4: 0 - shift filter settings.

5-35

V 0

-5

- 10 1 1, 1 1 1 1 1 1 1

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.42. Signal Test 4: 0 - shift inputs. This is the last 96 samples of the noisy

0 - shift sinusoidal input and desired signal.

1.5

v 0 v\ v-0.5 " v IV vv\
-1

-2-1.5

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.43. Signal Test 4: WDF1 filter output error for 0- A.ift input. This is the WDF1
output error for the last 96 output samples using M = 0.1.

5-36

2
1.5

1
0.5 A A -, A A \ AVA /A

v 0-
-0.5

-1

-1.5
- 2 I I I I I I I I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.44. Signal Test 4: WDF2 filter output error for 0- shift input. This is the WDF2
output error for the last 96 output samples using M = 0.1.

2
1.5
I

0.5
V 0

-0.5
-1

-1.5

-2
900 910 920 930 940 950 960 970 980 990

Time Index, i

Figure 5.45. Signal Test 4: TDF filter output error for 0 - shift input. This is the TDF
output error for the last 96 output samples using M = 0.1.

5-37

2 --

1.5

0.5
v 0

-0.5
-1

-1.5

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.46. Signal Test 4: FDF filter output error for 0 - shift input. This is the FDF
output error for the last 96 output samples using M = 0.05.

5-38

5.2.4.2 Noisy 2 - shift Results. The 2 - shift signal pair is depicted in Fig-

ure 5.47 and Table 5.15 specifies the filter configuration. Figures 5.48, 5.49, 5.50, and 5.51

show the error for the last 96 output samples produced by each filter using the optimum A

calculation method.

10

v 0

-5

-10

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.47. Signal Test 4: 2 - shift filter inputs. This is the last 96 samples of the noisy
2 - shift sinusoidal input and desired signal.

Parameter Setting
Block Size 16
Misadjustment 0.1
Datasize 992

Table 5.15. Signal Test 4: 2 -- shift input filter settings.

.5-39

1
0.5

a

V 0
-0.5 H I

-1
1 -1.5 - ' v i v ,

-2 t I I
900 910 920 930 940 950 960 970 980 990

Time Index, i

Figure 5.48. Signal Test 4: WDF1 filter output error for 2- shift input. This is the WDF1
output error for the last 96 output samples using M = 0.1.

1.5
I

0.5
A , 0, ,A AA A- 0. AAJ\V 0 A

-0.5
-1

-1.5
-2 I t t t t I

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.49. Signal Test 4: WDF2 filter output error for 2- shift input. This is the WDF2
output error for the last 96 output samples using M = 0.1.

5-40

2
1.5

I
0.5

V 0 , v - \ ,
-0.5

-1
-1.5 --2 ,,

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.50. Signal Test 4: TDF filter output error for 2 - shift input. This is the TDF
output error for the last 96 output samples using M = 0.1.

2 7

1.5-

0.5
V 0

-0.5
-1

-1.5-

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.51. Signal Test 4: FIlF filter output error for 2 - shift input. T his is the FDF
output error for tLe last 96 output samples using M = 0.1.

5-41

5.2.4.3 Noisy 4 - shift Results. The 4 - shift input pair is depicted in Fig-

ure 5.52. Table 5.16 specifies the filter configuration. Figures 5.53, 5.54, 5.55, and 5.56

show the error for the last 96 output samples produced by each filter using the optimum it

calculation method.

10 T

5

V 0

-5

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.52. Signal Test 4: 4 - shift filter inputs. This is the last 96 samples of the noisy
4 - shift siinasoidal input and desired signal.

Parameter Setting
Block Size 16
Misadjustment 0.1

Datasize 992

Table 5.16. Signal Test 4: 1 - 'shift filter settings.

5-42

5

v 0 , , .v ,,--v--U v / v V
-5

-10

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.53. Signal Test 4: WDF1 filter output error for 4 - shift input. This is the WDF1

output error for the last 96 output samples using M = 0.1.

10 i

5
v 0 7-w- ----q k--A "-- '\j 4 .-1 _ ,

V 0"V "-

-5

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure .5.54. Signal Test 4: WDF2 filter output error for , - shift input. This is the WDF2

output error for the last 96 output samples using Al = 0.1.

-5-,43

10 I I I I I

5

V 0

-5

-10 I I I i I
900 910 920 930 940 950 960 970 980 990

Time Index, i

Figure 5.55. Signal Test 4: TDF filter output error for 4 - shift input. This is the TDF
output error for the last 96 output samples using M = 0.1.

10

5

V 0

-5

900 910 920 930 940 950 960 970 980 990
Time Index, i

Figure 5.56. Signal Test 4: FDF filter output error for 4 - shift input. This "s the FDF
output error for the last 96 output samples using M = 0.1.

5-44

m Shift Error Signal Power (Watts)
TDF FDF WDF1 \VDF2

0.1 0 7.05E - 02 1.49E - 01 2.93E - 01 2.18E - 01
0.1 1 6.711E - 02 1.38E -- 01 5.11E -01 2.67E -01
0.1 2 6.22E - 02 1.26E - 01 6.52E - 01 4.67E - 01
0.1 3 5.83E - 02 1.20E- 01 3.19 2.13
0.1 4 5.72 - 02 1.20E - 01 3.01 1.96

Table 5.17. Signal Test 4:Error signal power for the last 96 samples.

5.2.4.4 Signal Test 4 Analysis. An independant bin pu was optimum for \VDFI
and WDF2 in minimizing the error for all reference shifts while the FDF filter did not

converge for any reference shift using an independant bin it.

Error Performance. Time shifting the input did not affect the output error
for the TDF and FDF filters as clearly shown in Figures 5.46, 5.45, 5.50, 5.51, 5.5.5 and
5.56. The TDF error is, on average, approximately half that of the FDF filter. Figures .5.43.
5.-44, 5.48, 5.49, 5.53, and 5.54 show that the output error for the Walsh-domain filters
increases as the reference shift of the input increases while Table 3.17 contains the results of
Signal Test 4 in terms of the error signal power. normalized to a one ohm resistor. for the
last 96 error samples. The WDF2 output error is not as significant as the XVDFI filter and
changes much less dramatically during the test than the \VDF1 filter error. In botti ca-ses
though, the error is much more significant than the FDF or TDF filter error.

The source of increasing error generated by the \VDFI and \VDF2 filters is the progres-
sive reduction in power of some of the input spectral components that correspond with the
desired signal spectral components as the reference shift bet'een the two signals increaM.-s
(See Section A.3). For the noisy input. the signal to noise iatio of these bins is reduced which
induces noise ini the bin tap adaptation. Considering the noisy 2 - .shift sinisoid input. Fig-

ures .5.57 thru 5.60 show the resulting WDFI input to desired bin ratios (Equation -1.17)
for bins 9 and 13, and the resulting tap adaptation tracks for those bins. Figures 5.61 thru
5.61 show the same information concerning \VDF2, which is using a 32-point transform of
the input. In this case bins 19 and 27 are good examples of the adaptation noise created by
bin ratio variation. Considering the -1 - -hift input, Figures 5.57 thru 5.60 address \VDFI
bin numbers 9 and 13. Figures 5.69 thru .5.72. address \VDF2 bin numbers 19 and 27.

5-.5

A 0.8
in 0.6
P 0.4
1 0.2

t -0.2
ii -0.4
d -0.6)

e -0.8

0 10 20 .30 40 50 60
Block Index. k

Figure .5.57. Signal Test 4: WVDF1 filter tap 119(k) for the 2- shzift input using indecpendent
bin /z and Al =0.1.

ItI
a 0.5iAi

0 10 20 30 -to 50 60
Block Index. k

Figure .5.58. Signal Test 4I.XDFI Ratzoj,(k). This is Lte ratio of the 2-Al4if I input 16-point
D\V1' bin 9 and the desired signal 16-point. DWT bin 9 versus k.

p 1
0.5

0-
t -0.5

U -1I
d -1.5Fe -

0 10 20 30 40 50 60
Block Index, k

Figure 5.59. Signal Test 4: WDF1 filter tap 1113(k) for the 2-shi'ft input using independent
bin it and M =0.1.

2
1.5

1
a 0.5

0
i -0.5

-15
--1.

0 10 20 30 40 50 60
Block Index, k

Figure 5.60. Signal Test 4:WDF1 Ratioi3(k). This is the ratio of thle 2 - Shift input
16-point DWT bin 13 and the desired signal 16-point DWT binl 13 versus k.

5-47

- 0.2
u -0.4

d -0.6
c -0.8

0 10 20 30 40 50 60
Block Index, k

Figure 5.61. Signal Test 4: WDF2 filter tap H19(k) for the 2-shif t input using independent
bin pt and M =0.1.

1.5
R 1

a 0.5
t 0

-.

0 10 20 30 40 50 6
Block Index, k

Figure 5.62. Signal Test 4:\'DF2 Ratbo1 9(k). Tphis is the ratio of the 2 - sh?.f input.
32-point DWT bin 19 and the desired signal 32-point DWT bin 19 vers .s k.

C- 48

2
A 1.5
p 1

0.5
0

t -0.5
U -1
d -1.5
e -2

0 10 20 30 40 50 60
Block Index, k

Figure 5.63. Signal Test 4: WDF2 filter tap H27(k) for the 2-shift input using independent

bin y and M = 0.1.

1.5 F

R 1
a 0.5
t 0
i -0.5
0 -1

-1.5
- 2 I II

0 10 20 30 40 50 60
Block Index, k

Figure 5.64. Signal Test 4:WDF2 Ratio27(k). This is the ratio of the 2 - shift input
32-point DWT bin 27 and the desired signal 32-point DWT bin 27 versus 1:.

.5-49

A 0.8
m 0.6
P 0.4
1 0.2

S0
t -0.2
u -0.4
d -0.6
e -0.8

0 10 20 30 40 50 60
Block Index, k

Figure 5.65. Signal Test 4: WDF1 filter tap H9 (k) for the 4-shift input using indcpendent
bin/p and M = 0.1.

1.5

R 1
a 0.5
t 0

S-0.5
0 -1

-1.5
-2

0 10 20 30 40 50 60
Block Index, k

Figure 5.66. Signal Test 4:WDF1 Ratio9 (k). This is the ratio of the 4-shift input 16-point
DWT bin 9 and the desired signal 16-point DWT bin 9 versus k.

5-50

A 1.5
m
p 1

0.5
0

t -0.5
u --1
d -1.5
e e - 2 I

0 10 20 30 40 50 60
Block Index, k

Figure 5.67. Signal Test 4: WDF1 filter tap H13(k) for the 4-shift input using independent
bin p and M = 0.1.

2
1.5

R I A A N
a 0.5

t -0.5 - v
0 -1

-1.5
-2 -

0 10 20 30 40 50 60
Block Index, k

Figure 5.68. Signal Test 4:WDF1 Ratio13(k). This is the ratio of the 4 - shi.ft input
16-point DWT bin 13 and the desired signal 16-point DWT bin 13 versus k.

5-51

A 0.8-
m 0.6-
P 0.4-
1 0.2-
i 0
t -0.2
u -0.4 -
d -0.6 -
e -0.8 -

0 10 20 30 40 50 60
Block Index, k

Figure 5.69. Signal Test 4: WDF2 filter tap H19 (k) for the 4-shifI input using independent
bin I and M = 0.1.

1.5
it I
a .,t 0

i -0.5
0 -1

-1.5

0 10 20 30 40 50 60
Block Index, k

Figure 5.70. Signal Test 4:WDF2 Ratio19 (k). This is the ratio of the 4 - shift input
32-point DWT bin 19 and the desired signal 32-point DWT bin 19 versus k.

5-52

A 1.
m
P 1

0.5
0

t -0.5
U -1

d -1.5
e -

0 10 20 30 40 50 60
Block Index, k

Figure 5.71. Signal Test 4: WDF2 filter tap 1127(k) for the 4-shift input~ using independent
bin yu and Ml 0.1.

1.5

a 0.5
t 0
0 0.

0 1 20 30 4 0 60

Figure 5.72. Signal Test 4:WDF2 Ratio. 2 7(k). This is the ratio of the 4 - shift input
32-point. DWT bin 27 and the desired signal 32-point DWT bin 27 versus k.

1 Shift Number of Weight Updates
TDF FDF WDF1 WDF2

0.1 0 21 1 9 9
0.1 1 21 2 5 6
0.1 2 22 2 10 10
0.1 3 22 2 61+ 49'
0.1 4 21 2 61+ 61-

Table 5.18. Signal Test 4: Number of weight updates to converge.

Convergence Specd Comparison. The convergence speed comparisons of
signal test 4 are reflected in Table 5 IS which summarizes the number of weight updates

required to converge. Entries with an * designate results determined using an independent

bin ft value while an entry with a "+" indicates convergence was not achieved.

5.3 Filter Processing Speed Comparison

This section presents a processing speed performance comparison between the WDF1,

WDF2, TDF, and FDF adaptive filters. 'Fable 5.19 contains the time required for each

filter to process a 1000 sample input sequence. The WDFI. WDF2, and FDF filters were
configured to process blocksizes of A' = 8 and N = 4 while the TDF filter was configured with

8 and 4 taps. Run-time for each filter began after all data constructs had been initialized.
the data was loaded, and the gain constant was calculated. Also. all external and internal
write statements were removed for the iun. Run-time was stopped after all data had been

processed.

The WDFI and WDF2 filters used a Fast Walsh Transform (FWT) 17]. Computa-

tionally. the F\VT requires ,V log2 N summations for an NV-point transform and no multi-
plies. The FDF filter used a Cooley-Tukey radix-2 FFT algorithm [6:435-436] that requires

2A log,2 4V A real multiplies. The TDF filter requires 2, 2 real multiplies to pioduce X
output points (See Section 2.2.2.1).

As indicated in Table 5.19, the TDF filter recorded the fastest. time for the N = 4
case and the WDFI filter was the fastest for N = 8. Both WDFI and \VDF2 were much

faster than FDF. The time required for the F\VT and FFT routines to perform a 16-point
transfot in is contained in Table .5.20, excluding set-up time. Cleat l. the F\VT is much faster

5-51

than the FFT. The FDF filter requires .5 FFTs per block to produce N output points (See

Section 2.2.2.2). The FWT's faster processing time and the fact that the Walsh-domain
filters are using only three tranforms per block (See Sections 3.1 and 3.2) accounts for the
faster processing times relative to FDF.

N Processing Time in Seconds
TDF FDF WDF1 WDF2

4 4.22 52.68 6.87 9.89
8 7.85 60.80 7.74 10.00

Table 5.19. Processing Time: Time required to process 1000 data samples. For TDF N
indicates number of taps; N indicates blocksize otherwise.

Transform Processing Time in Seconds
FWT 0.05
FFT 0.11

Table 5.20. Time required to perform a 16-point transform.

5.j Summary.

This purpose of this chapter was to establish a performance measure for \¥DF1 and
WDF2, relative to each other and the TDF and FDF filters. In terms of conveigence speed
and error performance, the Walsh-domaii, filters" performance degiladed as the reference shift

was increased in all 4 signal tests.

Since numerous observationb were made in the course of testing error l)erfoi niance of
the filters in this chapter it would be wise to lead(iesb each of them at this time. The major
error performance results from this chapter are as follows:

1. In Signal Test 3 (See Section .5.2.3) all 4 filters produced error results that were invariant

to the shift.

2. The 4 - shift rectangular signal in Signal Test I (Section 5.2.1) and Signal Pest 2

(Section 5.2.2))roduced the worst performance for the WDF1 and WDF2 filters.

5)-55:

" In Signal Test 1 the 4 - .hij't input results in a single sequency component DWT

for the desired and a different single sequency DWT for the input. Since the signals

are periodic and the block size matches the period, both DWTs are constant from

block to block. With single nonzero noncoincident components, the input cannot

be filtered to achieve the desired signal.

* In Signal Test 2, the input DWT component position corresponding with the

desired DWT nonzero component is due to noise only. In Ihis case, the variation

of the input bin of interest is such that the bin tap cannot converge. This problem

also arises for the \WDF1 and WDF2 filters in Signal Test 4 (Section 5.2.4).

3. The 3 - shift and 4 - shift noiseless sinusoidal spectrums result in low power com-

popents that correspond with higher sequelbcy coMpnents in the desired spectrum.

Adding noise to the input results in a low signal-to-noise-ratio (SNR) for these low

power bins. In filtering this noisy spectrum to achieve the desired spectrum, the low

SNR bin tap gradient follows the continuously changing relationship between the con-

stant valued desired bins and the noisy input bins. Thus, the bin tap adaptation

tracks are correspondingly noisy which limits the filtering abilty of the WDF1 and

WDF2 filters.

1. In general, the WDF2 filter error signal performance was better for the noisy input

cases, relative to the WDF1 filter.

*. The \\DF'I filter erior performance was better for the noiseless input cases. relative to

the WDF2 filter.

In this thesis, convergence speed was measured in terms of the number of weight

updates required to achieve 10% NMSE (See Section 5.1). Using this criteria, the Walsh-

domain filters were faster than the TDF and FDF filters when tested using rectangular

signals. The WI)F1 filter was better than WDF2 in Signal Test 1 while WDF2 N as better in

Signal Test 2. The FDF filter required the least nuinbei of weight-updates for the sinusoidal

input used in Signal Test 3 and 4. Ciompdring the two \Valsh-doinain filters: \VDFI required
as i any oi- fewer weight-updates as \VDF2 did for the noiseless sinusoidal input in Signal Trest

.3. WI)F2 required as many or fewer weight-updates as WDF1 did for the noisy sinusoidal

input in Signal Test 4.

A processing speed comparison (See Section 5.3) showed the Walsh-domain filters to

l)e at least, four times as fast. as FDF for A' = S. The WDFI filter was the fastest of the

5-56

blockprocessing filters used in this thesis followed by the WDF2 and FDF filters, in that

order. This is based on the FDF filter using a radix-2 FFT and the Walsh-domain filters

using a Fast Walsh Transform. The TDF filter was slightly slower than the WDF1 filter for

a blocksize of N = S. The next chapter preseints the conclusions and recommendations for

this research effort.

:)-.57

VI. Conclusions and Recomm.endations

6.1 Conclusions

This thesis investigated the development of two Walsh-domain adaptive filters. The

first, WDF1, was implemented using a frequency-domain circular convolution design while

the second, WDF2, was implemented using a modified Fast LMS design. A time-domain

adaptive filter (TDF) and the Fast LMS filter (FDF) were also implemented in software and

used for comparison. Rectangular and sinusoidal test signals were used. Shifted noisy and

noiseless versions of both were used to conduct error performance, convergence speed, and

processing speed performance comparisons for the TDF, FDF, WDF1, and WDF2 filters.

The following subsections address the performance comparison conclusions.

6.1.1 Error Performance Conclusions. Based on the last 96 error samples produced
by each filter, the error performance conclusions from this research effort are the following:

" The Walsh-domain filters are better than the TDF and FDF filters in terms of mean-

square-error (MSE) filtering discontinuous input signals, while the TDF and FDF filters

are better for continuous signals.

" Input shifts cause WDF1 and W DF2 error performance to degrade for noisy and noi.e-

less discontinuous signals.

* The WDF1 filter is better than the WDF2 filter for noiseless signals while the WDF2

filter is better than the WDF1 filter for noisy signals.

• A single it is better than separate it's for Walsh-domain filters filtering rectangular

input signals while a separate p is better for sinusoidal input signals.

Shifts in the input data do not degrade WDFI arid WDF2 performance hien filtering

noiseless sinusoidal signals. That is not the case for noisy signals.

" Shifts in the inl)ut data do not affect TDF and FDF MSE performance.

* The FDF filter produces less error using a single bin p for simple sinusoids and rect-

angular signals, relative to the results obtained using a separate bin it.

6-1

6.1.2 Convergencc Speed Pcfomancc Conclusions. The convergence speed criteria

was the number of weight updates required to achieve 10% Normalized Mean Square Error

(NMSE) where normalization was with respect to the desired signal Fower. For the noisy

input signals, MSE learning curves were generated from 100 data files using Additive White

Gaussian Noise (AWGN). Using this criteria it was concluded that:

* The Walsh-domain filters converged more slowly when filtering sinusoidal input signals

as opposed to rectangular input signals.

" The Walsh-domain filters converged more quickly for nois3 and noiseless rectangular

input signals and more slowly when filtering noisy and noiseless sinusoidal signals,

relative to the FDF filter.

" The TDF filter converged more slowly than the FDF, WDF1. and WDF2 filters when

filtering noisy and noiseless rectangular signals.

" Beyond a two sample shift of the input, the Walsh-domain filters converge more qij'ckly

using a separate bin p when filtering noisy and noiseless sinusoidal signals.

" Beyond a two sample shift of the input, the TDF converges more quickly than I.\'DF2

for the noiseless sinusoidal signal and more quickly" than \VDF1 and \VDF2 for noisy

sinusoidal signals.

Convergence speed was the same for \VDF2 and WDFl for noisy and noiseless rectan-

gular signals.

The WDF2 sinusoidal input signal convergence speed for the noiseless input degrades

more quickly as the input shift increases and degrades at tie same rate for noisy input.

relative to the WDFI sinusoidal input signal convergence speed performance.

The \Walsh-domain filters converge more quickly filtering a rectangular input -signal

using a single bin p . relative to the results obtained using a separate bin It.

" Data shifting degraded lhe convergence speed of the Walsh-domain filters.

* The convergence speed of the TI)F and FDF filters was independant of the input shift.

6. 1.3 Processing Specd Performance Conclusions. The FI)F filter was implemented

with a radix- 2 FFT while the \Walsh-domain filters used a Fast Walsh Transform (F\VT).

The FDF. WDFI, and W'DF2 filters were configured to process 8-point and -4-point block

sizes and the TDF filter was (onfigured with S and -1 taps. The datasize was 1000 samples

6-2

and the run time started after all data constructs had been initialized, the data was loaded,
and the gain constant was calculated. Based on this configuration. the processing speed

performance conclusions for this research effort are the following:

" The TDF filter processed the 1000 samples more quickly than tie FDF, \VDF1. and

\'VDF2 filters for small N.

" The \VDF1 filter processed the 1000 data samples more quickly than the FDF and

WDFI filters.

* The W FI filter is faster than the W)F2 filter.

* Tle FDF filter processes the 1000 samples more slowly, relative to the TDF. \VI)F2.
and WDFI filters.

6.1.4 Filtering Limitations.

* A WDF1 and WDF2 filtering limitation exists due to the time-shift variant nature of
the DWT. This is based on the fact that a signal data shift can result in a DWT that

has different sequency terms than tie D\VT of an unshifted version of the signal. The

,4 - shift input signal in Signal Test 2 was an occurrence of this.

" The quality of the convergence characteristics for \VDFI and WDF2 is inversely pro-

port ional to the variance of the input-to-desired sequency ratios.

6.2 Subjcclivc Ranking

The TDF. FDF. WDFI. and \VDF2 filters cal be subjectively ranked using the re-

suits of Chapter I. Table 6.1 provides subjective rankings for the filters when the noiseless
and noisy. sinusoid and rectangular inputs were u.ed..\ rank of I indicates best. O'erall

performan(e was considered for each input signal. The -1 - .shaft rectangilar input wa.% not
included it the rankings piresented because it was considered an exception.

6.3 Recommcndations

There are several recommendations which ni ight make a rea.sonable thesis topi or serve

as topics within related research.

I. The \VI)F2 filter implemented in this thesis used a 507. oxerlap to create the kth block
input vector. One might further iMmiestigate what effects the (hoice of another oxerlap

percentage would have on the filtering performance of the filter.

6.3

2. The Walsh-domain filters were implemented using a modified form of the complex LMS

algorithm. One could also implement the filters using a modified form of the Leakage

LMS algorithm to investigate whether this would improve the general convergence

characteristics of the Walsh-domain bin taps.

3. Finally, this thesis used a simple representative of a continuous and discontinuous

gnal to test the Walsh-domain filters. To further evaluate the filters, more complex

representatives of each type of signal could be used.

Criteria Sine Input (Noiseless/Noisy) Rect Input (Noiseless/Noisy)
7TDF FDF WDF1 WDF2 TDF FDF WDF1 WDF2

Process Time 2/2 4/4 1/1 3/3 2/2 4/4 1/1 I 3/3
Convergence Speed 4/2 1/1 2/3 3/3 4/4 3/3 1/1 2/2

Error 1/1 1/2 2/4 3/3 2/2 3/3 1/4 1/1_]

Table 6.1. Subjective Ranking for Noiseless/Noisy Input.

6- 1

Appendix A. Discrete Walsh Transform

This Appendix presents examples of Discrete Walsh Functions and the Discrete Walsh

Transform (DWT) and its properties.

A.1 Discrete Walsh Functions

For a series of N terms, the discrete Walsh functions can be specified as [1:59]

p-I

1'VAL(n,i) = JlI(-l)n -'P- r(r+ r+) (A.1)
r=0

i, n 0, 1,2, N -1 (A.2)

r =0,1,2,...,p- 1 (A.3)

where N 2P defines p. The indexes i, n are expressed in terms of their binary digits such

that

i = (iP, ip- 1 .. .,Iil 7io)2

n =(nP, nP_, ...,n,no)2 (A.4)

An example calculation for the N = 4 series term I'AL(3, 1) using Equations A.1 and A.5

is presented. In evaluating WAL(3, 1) we start with

which means there are p = 2 product terms, so that

WAL(3, 1) = 1)fl1 -r(ar+2r+)

r0O

and

= .(0 1)2

= (1 1)2

A-I

The first product term (r = 0) then, is

= (--)n(io+ti)

= (-1)(°+1)

The second product term (r = 1) is

= (-1)1 '°

=1

WAL(3, 1) can now be calculated by multiplying the first and second product terms

together, so that

WAL(3,1) = -1.1

Figure A.1 shows the N = 8 series Discrete Walsh functions.

A.2 Dyadic Convolution

Dyadic convolution is defined as [1:100]

N-i

zT = 1/N E XzYTeD (A.5)
i=O

and using the Discrete Walsh Transform (See Section 2.1.2)

N-I

= XnY, 1'WAL(n,r) (A.6)
n0O

Two N = 4 point time-domain sequences x, and yj are given by

,= {1 5 3 8)

A-2

WAL(O, i)

-4 - - -.

I WAL(3, i)

4 k
14 A L 4 i

I

WAL(5. i)

WAL(6. i)

0 1 2 3 4 6 7
Discrete Time Index,

Figur - Discrete W~ash Functions for N =8, in sequency order.

A-:3

yi = {2 7 4 1}

where the xo and yo terms are the 1 and 2 terms respectively. Using Equation A.5, for T = 0

we have

3

zo = 1/4 1 xiyoE,
i=O

= 1/4[xoyo + x1y + x 2Y2 + x3Y3]

= 1/4[1-2+5.7+3.4+8.1]

= 14.25

For " = 1 the result is

3

zi = 1/4EXiYIEi
i=O

= 1/4[xoyl + x1yo + x2Y 3 + X3Y2]

= 1/4[1.7 + 5.2 + 3-1 + 8.4]

= 13.00

For r = 2 the convolution result is

3

Z2 = 1/4 Xii/2Gz
i=O

= l/4[xoy2 + Xly 3 + x2yo + x3yI]

= 1/4[1.4 + 5.1 + 3.2 + 8.7]

= 17.75

Finally, for r - 3

3

73 = 1/4 x y3Ci
2=0

= 1/.t[xoy 3 + XIY 2 + X2Y) + x3Yo]

= 1/4(1.1 + 5.4 + 3.7 + 8-2]

= 1,A.50

A-,4

The first step, in applying the DWT to perform the dyadic convolution of x, and y,,

is to perform the DWT on both sequences. Using the matrix vector form of the transform,

the 4-point Walsh matrix is given by

1 1 1 1

= 1 1 -1 -1 (\WV = (A.7)
1 -1 -1 1

1 -1 1 -1

The DWT then is given by

X= (1/4)NW4Xi (A.8)

For a general 4-point sequence, written as a column vector

xf =[A B C D]

such that the 4-point DWT is given by

11 1 1 A

11-1 -1 B
X = 1/,] (A.9)

1-1-11 C

1-11 -1 D

The resulting DWT is given by

An + B-C

A -B+ C- D

A -5

Substituting in the x, and y, sequence values for AB.C,D yields a DWT for x, of

17

-. 5
X,, = 1/4

I

-9

and for yj of

14

4
Y,, = 1/4

-8

-2

Performing the multiplication of Yn, and X, yields

14.875

-1.25
71

-0.50

1.125

The inverse DWT of Zn is evaluated by multiplying the -1 x4 matrix W'V and 4x 1 vector Z,,

1 1 1 1 1-1.875

1 1 -- 1 1 -1.25
= (A.10)

1 -1 -1 1 -0.50

1 -1 1 -1 1.125

which yields the 4 x I vector

14.25

13.00
z= (A.1 1)

17.75

14.50

A-6

This result is equivalent to the result calculated using the dyadic convolution sum.

Utilizing the FFT instead of the DWT in this example results in circular convolution

of the two sequences. Linear convolution i. performed if both sequences are zero end-padded

with 4 zeros. The result of zero padding tile x, and y, sequences and taking the inverse DWT

of the product of their transforms, produces the result in Equation A.11 multiplied by 1/2.

The two sequences in this case are

x, = {1 5 3 8 0 0 0 0}

yi = {2 7 4 1 0 0 0 o}

The required 8-point DVT Valsh matrix is given by

1 1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1 -1

1 1 -1 -1 -1 -1 1 1

1 1 -1 -1 1 1 -1 -1
-V8 (A.12)

1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 -1 1 1 -1

1 -1 1 -1 -1 1 -1 1

1 -1 1 -1 1 -1 1 -1

A -7

The resulting DWT for yis

1.75

1.75

0.15

YIZ 0.5

-1

-1

-0.25

-0.25

The resulting DWNT for xi is

2.125

2.125

-0625

-0625
Xn=

0.125

0.125

[1.125
-1.125

A*\-8

Multiplying X, and Y, and taking the inverse DWT produces

7.125

6.5

8.875

7.25
Z- -

0

0

0

0

which is the result in Equation A.11 scaled by 1/2 and end-padded with 4 zeros.

A.3 DWVT of Time-shifted periodic signals

A.3.1 Sinusoid. The effects of shifting a sinusoid on the resulting D\VT are presented

in this section. The sinusoidal signal used has a period of 16 samples. DVT spectra of one

and two periods of this signal, shifted and unshifted, are presented for one (Section A.3.1.1)

and two periods (Section A.3.1.2) of the signal. Notationally an n-point shifted sinusoid will

be referred to as the n - shift sinusoid.

11.3.1.1 16-Point Transform. The 16-point DWT of the signal in Figure A.2 is

represented for zero, single, two, three, and four sample shifts in Figures A.3, A.4. A.15,

A.6, and A.7. Clearly. the shift variant nature of the DWT is demonstrated in that the 16-

point DWT of this signal is changing as the signal is shifted.

A1.3.1.2 32-Point Transform. The 32-point DWT of the signal in Figure A.2 is

represented for zero, single, two. three. and four sample shifts in Figures A.S. A.9. A.10,

A.11, and A.12. Notationally an n-point shifted sinusoid will be referred to as the n - shift

sinusoid.

Clearly. the 32- point DWT of this signal is changing as the signal is shifted. Also, the

spectrums are clearly different from those in Figures A.3, A.A, A.5, A.6, and A.7, because

the DWT does not assume periodicity of the input.

A-9

10

5

V 0

-5-

-10 1 I I I

0 10 20 30 40 50 60 70 80 90
Time Index, i

Figure A.2. This is a sinusoid with 16 sample period and amplitude of .5

I I I I I I

4

21
0 I

-2

-4 -I I I I I II

0 2 6 8 10 12 14
Sequency

Figure A.3. This is the DWT of one period of the 0 - shift sinusoid.

A-10

4
2

v 0

-44 -- I I 2

0 2 4 6 8 10 12 14
Sequency

Figure A.4. This is the DWT of one period of the 1 - shift sinusoid

4
2

Vi i I
v 0

-2

-4

0 2 4 6 8 10 12 14
Sequency

Figure A.5. This is the DWT of one period of the 2 - shift sinusoid.

I I I I I I IA4
A-I

2

V 0 I

-;2

0 2 .4 6 8 I0 12 14
Sequency

Figure A.6. This is the D\\"T of one period of the .3 - .shift sinusoid.

A-11

I I I I i i I

4

2
v 0

-2

-4
SI I I I I

0 2 4 6 8 10 12 14
Sequency

Figure A.7. This is the DWT of one period of the 4 - shift sinusoid.

SI I I I I

4

v 0 I

-2

-4r

I I i I II

0 5 10 15 20 25 30
Sequcncy

Figure A.S. This is the DWT of two periods of ti.e 0 - shift sinusoid.

2

-4

0 5 10 15 20 2.5 30
Se quency

Figure A.9. This is the DWT of two periods of the I - shiftI sinusoid

4 -I I I I I I j

2\r 0

-2

-4
I I I Ij

0 5 10 15 20 25 30
Sequency

Figure A.10. This is the DWT of two periods of the 2 - shift sinusold.

4J

V 01 I ~I

-4 r :
0 5 10 15 20 25 30

Sequency

Figure A. 11. This is the I)\T of two periods of the 3 - ;hif' sintusoli.

V I
2

' i I

•~ 2- i

* I

12 hs h-)'I ftw eidsooh '1 ' f

-'2. 1

.4.3.2 licclangular. The effects of shifting a rectangular signal, on the resulting DWT
are presented in this section. The rectangular signal used has a period of 16 samples. DWT
spectra of one and two periods of this signal, shifted and unshifted, are presented for one

(Section A.3.2.1) anid two periods (Section A.3.2.2) of the signal. Notationally an n-point
shifted rectangular signal will be referred to as the n - shift rectangular ;gnal.

A.3.2.1 16-Point Transform. 'I., 16-point DWT of the signal in Figure A.13

is represented for zero, single, two, three, ,,id four sample shifts in Figures A.14, A.15,
A.16, A.17, and A.18. Clearly, th 16- point DWT of this signal is changing as the signal

is shifted, which again demonstrates tiie shift variant nature of the DWT.

10 ' -----1--- I I

V

0

-50

0 10 20 30 40 50 60 70 80 96
Time Index, i

Figure A.13. This is a rectangular signal with 16 sample period and amplitude of 5

A.3.2.2 -3-Poit Transform. The 32-point DWT of the signal in Figure A.13
is represented for zero, single, two, three, and fo sample shifts in Figures A.t9, A.20,

A.21. A.22. and A.23. Clearly, the 32- point DWT of this signal is changing as the signal

is shifted.

A-I14

10 --

0

-5

-10 I I I I i I I
0 2 4 6 8 10 12 14

Sequency

Figure A.14. This is the DWT of one period of the 0 - shift rectangular signal.

10 i I I i

5

v 0 I

-5

-10 i I I

0 2 4 6 8 10 12 14
Sequency

Figure A.15. This is the DWT of one period of the I - shift rectangular signal.

10 -, i

5

v 0

-5

-10 I I I I I I

0 2 4 6 8 10 12 14
Sequenc%

Figure A.16. This is the DWT of one period of the 2 - shift rectangular signal.

A-15

10 -

5

V 0 i I I I

-10 1I I I I I

0 2 4 6 8 10 12 14
Sequency

Figure A.17. This is the DWT of one period of the 3 - shift rectangular signal.

10 i _______ ______ _

5v °0
-5

-1I I

0 2 4 6 8 10 12 14
Sequency

Figure A.18. This is the DWT of one period of the 4 - shift rectangular signal.

10

V i0 I

-5

- 1I I

0 5 10 15 20 25 30
Sequency

Figure A.19. This is the DWT of two periods of the 0 - shi.ft rectangular signal.

A-16

10

5

-5

-10 L L. L
0 5 10 15 20 25 30

Sequency

Figure A.20. This is the DWT of two periods of the 1 - shift rectangular signal.

10

5

v 0

-5

-10 I

0 5 10 15 20 25 30
Seq uency

Figure A.21. This is the DWT of two periods of the 2 - s;hi*ft rectangular signal.

10

v 0

-5

-10 I

0 5 10 15 20 25 30
Sequciicy-_____ ___ J

Figure A.22. This is the DWT of two period of the 3 - shift rectangular signal.

A -17

10

5

V 0
-5

-10 I

0 5 10 15 20 25 30
Sequency

Figure A.23. This Is the DWVT of two periods of the 4 - shift rectangular signal.

A-18S

Appendix B. WDF1 Weight Update

This Appendix derives the WDF1 Walsh-domain gradient vector which is used in

Chapter II (see Section 3.1). An example is presented for the N = 4 block size. A WDF1
time-domain gradient example is also presented for the block k = 2 using the block size
N = 4. This example is used to facilitate a comparison with the \VDF2, FDF1, and FDF2

filters.

B. 1 Walsh-Domain Gradient

The Walsh-domain weight vector is specified by

H(k + 1) = H(k) + ItX(k)E(k) (B.1)

where the X(k), E(k), and 11(k) vector components are real valued quantities since the Dis-

crete Walsh Transform (DWT) produces real valued components. The product X(k)E(k) in

Equation B.1 defines the Walsh-Domain gradient vector Vil(k) for WDF1. Using Vwl(k),

Equation B.1 can be expressed as

o(k + 1) Ho (k) V i (B(k)

III,(k + 1) H,(k) Vwn, (k)= +t (B.2)

HA..-,I (k, + 1) l-lI_(k) 7wl,.,(k-)

The first task in deriving the Walsh-domain gradient vector V Vw(,) io define some

necessary time-domain notation. Using the notation x, to repi)sent the input bequence. the
N input sequence values which define the kt h input block can be represented b% .rk,\ +, where

i0=, , .. , N - 1. Using this notation, the N-point kt.h block input. vector is defined

x(k) = IxkN......k,+:,-I1 (b.3)

B- I

Applying the same notation to the deired tinic-domain sequence, the associated kth block

desired vector is represented as

d(k) = j,1,N ... dkr+N-1 (B.4)

The kth block input DWT matrix X(k) is given by

X(k) = diag{W{[x(kN) ... X(kN+N-I)]}} (B.5)

where 14 is the forward DWT operator. The forward and inverse N-point D\VT pair [1:501
is as follows:

N-i

X,1 = 1/N E xIVAL(n, i) (B.6)
1=0

and
N-i

x,= X,,WAL(n,i) (B.7)
71=0

The DWT components of the kth N-point input block, X,,(k), comprise the diagonal com-

ponents of the input n.a.:ix as indicated in the following equation

Xo(k) 0

x(-) =(k (B.8)

0 X.,v(k)

The Valsh-domain output vector for the kth block is calculated as follows:

Y(k) = X(k)H(t'k) (B. 9)

so that

Xo(k) 0 Ho(k)

Y(k) X(k) H,(k)

0 XN-I(k) lv- 1(k)

P,-2

The resulting \,Valsh-Donain output vector is then

r
I Xo(k)Ho(k)

Y(k) = , (k) (k) (B.10)

XN _,(k-)HNI(k)

The Walsh-domain error vector for the kth block is defined

E(k) = D(k) - Y(k) (B.11)

where D(k) is the kth block desired D\VT component vector. Therefore, D(k) is defined

D(k) = W {[d(k,,) ... d(kv+v- I)]} (B.12)

and

D0(k)

D(k) = (k)

D. I(k)

Substituting Equations B.! and 13.10 into Equation B.11 results in

Do(k) - Xo(k)Ho(k)

E =(k) D1(k) - X,(k)III(k) (1.13)

Dv .-I (k) - X, -_I (k)/tv-I (k)

13-3

Performing the matrix vector multiplication X(k)E(k) produces

V.,o (k) Xo(k)[Do(k) - Xo(k)Io(k)]

VVI, (k) X,(k)[D,(k) - X, (k)H,(k)(VYw 1 (k,) = =(13.14)

VII.Ix,(k) XN-I(k))[DN-] (k) XN- I (

This is the result used in Section 3.1.

B.2 Time-domain Gradient
The equivalent time-domain gradient expression for WDF1 is given by

N-I

V(k) = 1/N E e,(k)x(iej)(k), j = 1,...N - I (B.15)
X=O

where j is the time-domain weight index, a indicates mrodulo-2 addition for the binary

representations of i and j, and V (k) defines the kth block gradient term for each time-

domain weight. The .r,(k) and c,(k) terms represent the ith component of x(k) and e(k)

respectively, during the kth block:

x(k) = [Xk, kN+N-I]

= [xo(k) ... X(N_ 1)(k) (B.16)

and

e(k) = [k.vCkN+N-,]

= [co(k) ... c(,x,)(k)J (13.17)

The first step in defining the c,(k) terms is to define y,(k). The y:(k) terms are derived from

the inverse DWT (Equation B.7) of Y(k) (Equation B.10):

y(k) = W-'{Y(k)} (13.18)

13-.I

where WV' is the inverse DWT operator. Notationally, the N output sequence values for

the kth block are represented by YkN+,, where i = 0, 1,..., N - 1. Therefore, the kth block

output vector y(k) is represented by

y(k) = [YkN ... YkN+N-1] T (B.19)

The c,(k) terms represent the ith component of the time-domain error vector e(k) such that

e(k) = W'{E(k)}

= [(dk,, - YkN) ... (dk,+!,,-, - YkN+U-,)]T

= [eo(k) ... eg,(k)]T (B.20)

Using Vj(k), the tl: domain weight update equation can be specified

hj(k + 1) = h3(k) + ILV(k) (B.21)

so that
ho(k + 1) h,(k) V,(k)

h=(k +1) + V' (B.22)

hv-,(k + 1) h,,I (k) VN._(k)

For a N = , block size, the expression for the k = 2 block, where in general k = 0, 1
lbecomes

b mo(3) ho(2) Vo(2)

(3) h (2) + (2) (13.23)
- +

B-5

Each gradient term is calculated using

3

V1 (2) = 1/4 E ej(2)x(203)(2), I = 0. 1,.. 3 (B.24)
z0O

where

x(k) = [:rs x9 xWo xilJ

e(k) = [es e9 e10 ell]

The initil sample index for both x'k) and e(k) begins at 7- = 8 since kA'x4

TIhe j=0 term- is5

Vo(2) = 1/4[eo(2)xo(2) +el(2)x 1 (2) + 2(2)X2(2) ±e 3 (2)X3(2)]

= 1I4tesxs + C9XT9 + e10xio + elixiiJ

The j = I term is

V1(2) = l/4[eo(2)xl(2) + e(2)xo(2) ± 2(2)X3(2) +e 3(2)x 2(2)J

= I/4[esxg + e9.r6 + cWoxil + e11xioJ

The j' = 2 term is

7-()= l/4[eo(2)X2 (2) + e(2)X3(2) +c 2(2)xo(2) +c 3 (2)xl(2)J

= l/4[coxio + cq-X11 + cI0x8 + cj,.rqj

Finally. the j 3 termn Is

V'()= l/4Vo(2)X3(2) + c(2)z-2(2)+ C2(2)x71(2) +c 3(2)xo(2)I

= 1/1[csxll + e9X10 + CIoxg + 1 .s

Each of the 7,(2) terms represents the dyadlic convolution of the kth error block and input

block.

13-6

Appendix C. WDF2 Weight Update

This Appendix derives the WDF2 Walsh-domain gradient vector . Ani example is

presented for the N = 2 block size. A WDF2 time-domain gradient example Is also presented

for the block k = 2 usingr the block size N = 4.

0.1I Walsh-Domtain Gradient

The W-alsh-domnain WDF2 weight vector is specified by

Hi(k + 1) = 11(k) + ,iX(k)E(k) (C.1)

where the X(k), E(k), and H(k) vector components are real valued quantities and the product

X(k)E(k) defines the WDF2 gradient vector VIV2(k). The WDF2 filter requires thle use of

2N-point transforms clue to the 50% overlap method employed in determining the input

vector. Accordingly. the filter uses 2N W-alsh-domain taps to filter thle data. In vector form

the weight update equation can be expressed as

IIo(k±+1) Ho(k) V Is2,(k)

H1 (k-i+ 1) - 111 (k) + 'V.2 (k) (C.2)

II2 N1-(k + 1) H-.Nr.4k) V. 2 (k)

At this point we begin the VIS2 (k) dlerivation) by defining the kill block XNDF2 time-

domain input vector x(k). Using the notat ion .r, to represent thle input %equence. the .V input

Sequence vailes which definle thle kth input b:ock can be represented b% .r. -Ik-+,. whereI- =

0. 1...\ - L. Next. the N-point previous block andl N-point ciirrent bl(ck are concatenated

to prodluce the kth block iniput vector, (defined as

%(k) =(kN)...X(k.,Vj) X(kN,) .. .X +Nk-I)I (C.3)

(k- I)Uh block kt h block

C'-

The kth block input transform matrix X(k) is given by

X(k) = diag{v[X(kNV) ... X(kiN-I) X(k') ... X(k'+U-I)} (C.4)

(k- I)th block kth block

where 14 is the forward DVT operator. The forward and inverse N-point DWT pair [1:.501
is as follows:

N-I

= 1/A E xVAL(ni) (C.5)
i=0

and
aA'- IN -!

,= X,,VAL(n,.i) (C.6)
,,=0

Representing the DVT transform components of the 2N-point kth block input vector

as X,(k), X(k) can be expressed as

X0 (k) 0

X(.) =
(C.7)

0 X2xV-,I(k')

The first step in deriving t lie \Valsh-domain expression for E(,'). is he evaluation of the ,th

block Walsh-domain output vector Y(k):

.\Xo(k) 0 1Ii(1,')
XI(I,', ll(k)

Y() = (k)('.)

[.X,'-ti(/,') l2V-,(I,')

('-2

Performing the multiplication of the 2N'x2N matrix X(k) and 2.Yx I vector 1(k) yields the

2Nx 1 vector Y(k) given by

FI Xo(k)fo(k)

X, (kIH• k
Y(k'-9)

Taking tile inverse DWT of Y(k) and saving the last N values (See Section 3.2) produces the

kth block output vector. Representing the N output sequence values which dcfi.e the kth

output biock as Yk.X'+,. where i = 0. 1..N.. - 1. the kth block time-domain output block

vector is defined

.k)= [y(kv).... .y ,N+N-,)]

= last N tern's of W-'{X(k)h1(k)} (('.i0)

The W' operator used in Equation C.10 is the inverse DWT operator. Using the inverse

DWT sum (Equation C.6). the y(k) vector can be expressed as

Y," +I I I. L (n. N),, (k)I(') 1
!/k:'+i Zx'' - IU.'AL~n. .N -' l).',k)ll,,(Ik)(ClIy(k) 11=0 (c.IlI)

;-2N1\ -L(n 2.V - I).V,(ktl,,(k)

The \Walsh-domain error vector E(k) for the kth block is defined b\

E(k) = w Jo o .,(v ..- Y(k.,)) ... (,(k..,--, - :,1.. .)) (C.12)
N eros Pth error bloek

where d,.xN+) represents the ith sample in the kth .N-point desired sequence block.

(-3

Using the linear property of the DWT (See Section 2.1.2), Equation C.12 can be

expressed as

E(k) =W[O . 0 d(kN) ... d(kAN+N-1).)] T }

N zeros

- . (kN) ... Y(kN+N-)} r } (C. 13)
N zeros

Evaluation of
W{ [0 . Y(kN) ... Y(kg+N-1)] :r (C. 14)

N zeros

using Equations C.5and C.11 produces the vector

i=N-71=..-1 W AL(O, i)WAL(n, i)X,,(k)H.n(k)

1N- n2-' W AL(1, i)VAL(7,i)X,,(k)H,,(k) (C 5)
2 N

z 2N-1 - WAL(2N - 1,i)WAL(n,i)X,,(k)H,(k)
t=N z-n=O W L2

Cancellation of terms reduces this expression to

Xo(k)Ho(k) - X,(k) H(k)

-Xo(k)Ho(k) + XI(k)fI(k)

X 2(k)H 2(k) - X 3(k)H 3 (k)

-X 2(k)H2(k) + X3 (k)fH3 (k)

1/2 (C.16)

X(2,,-4)(k)IH(2N-4)(k) -X(2N-3)(k)H(2N-3)(k)

-X(2N- 4)(k)H(2N- 4)(k) + -V(2N-3)(k)H(2N-3)(k)

X(2,v-2)(')H(N-2)(k) - X(2 N-1(.)(k)H(2N-)(k)

-,X(2N - 2)(k)IH(2N- 2)(k) + X(2N-,)(k)H(2 N - 1)(k)

C-A

where (1/2N).N = 1/2. For N greater than 2

W[O . dik,) ... dck]+N-,)] r (C. 17)
N zeros

can be expressed as

DA,, (k)

- DN (k)

-DN, (k)

DN, (k)

1/2 (C.18)

Div, 2 (k)

-DNN_ (k)

-DNN, (k)

L DN, (k)

where the DN, (k) terms represent the nth component of the N-point DWT of the current N-

point block of the desired signal. The 1/2 factor results because the N-point DWT terms were

calculated using a 2N-point DWT. The N-point D\'VT components of the desired signal occur
due to the zero front-padding of the vector transformed. For N = 2 Term C.17 produccs the

vector

d(2k) + d(2k+l)

1/4 -d(2k) - d(2k+I) (C.19)
-d(2k) + d(2k+l)

d(2k) - d(2-+1)

(1:-5

Substituting the vector results C.18 and C.16 into Equation C.13, results in

DN, (k) Xo(k)Ho(k) - XI(k)HI(k)

- DN, (k) -X 0YO(k) Ho(k) + X, (k) H, (,)

-DNI k) X 2 (k) H2 (k) - X 3 (k) H3 (k)

DN,1 (k) -X 2(k)H 2 (k) + X3(k)H 3(k)

E(k) =1/2 - 1/2

DNIN- (k) -(N4()(N4()X(N3()(N.)k

-DNN 2 (k) -X(2 v. 4)(k)IJ(2N-.4)(k) + X(2,V..3)(k)H(2 .. 3)(k)

- DANI- (k) X(2N..2)(k)II(2N-2)(k) - X2-)kH2-)k

DNI (k) -(2 N-2)(k)H(2 NV2)(k) + X(2N-i)(k)H(2A'...)(k)
(C.20)

which simplifies to

Div,(k) - Xo (k) Ho(k) + X, (k) H,(k)

- DN0 (k) ± Xo (k)fHo (k) - X, (k) H,(k)

- D,, (k) - X 2 (k) H2 (k) + X 3 (k) H3 (k)

DN, (k) + X 2 (k) H2 (k) - X 3 (k) H3 (k)

E(k) =1/2 (C.21)

DNNv2 (k) - X(2N..l)(k)H(2 V-4)(k) + X(2N..3)(k)I-(2AT-3)(k)

-DATN-2(k) + (2AT.. 4)(k)H(2N.. 4)(k) - X2-)kH2-)k

-DANI (k) - A'(2A1-2)(k)II(2N- 2)(k) + X(2 N..I)(k)Ii(2 N-1.)(k)

DATN- (k) + (2N.-2)(k)fI(2N-.2)(k) -X2-(k12A-)k

C- 6

Performing the multiplication of the 2N\x2N matrix X(k) and 2.1%x 1 vector E(k) yields the

2 N x IVector V I 2 (k)

V~0 (k)1

V714 2 (k)

'7 I (C.22)

V1W2,N (k)

VIVV2 2 2 . (k)22
VIV2,N.. (k)

VII22N..I (k)

Xo(k)[DAT0(k) - Xo(k)Ho(k) + X1 (k)HI(k)]

X, (k)[-DA,. (k) + Xo (k) Ho (k) - X, (k) H,(k)]

X2 k) A,,(k)- X2 (k) H 2 (k) + X 3 (k) H3 (k)]

X3(k)[DN, (k) + X2(k)H 2 (k) - X3 (k)11 3(k)1

=1/2

X(2,V..,I)(k)[D,,Y,-,(k) -)((2 A-. 4)(k)IJ(2A'.. 4)(k) + X(2 1v-3)(k)J'(21v-3)(k)][X (2N.'3)(k)[-DvN (k) + X(2A;.. 4)(k)II(2A1 v.4 dk) - X2-)kH2F3(~

X(2 .V..2)(k)I-DN-(k) - X(2 jv...2 (k)II(2N-. 2)(k) + X(2A7...)(k)II(2 ... I)(k)I

X(2N....)(k)[DNN..I (I) +X(2N..2)(k)II(2N... 2)(k) -- A(2 v-1)(k)H(2N- 1)(k)]

(C.23)

Trhis is the result p~resentedl in Section 3.2. For N = 2 the Walsh-domiain gradient is

VIV2(,(k) Xo(k) [d(2k) + d(2k+ 1) - 2Xo(k) Ho (k) + 2X'1(k) H,(k)]

Vjj1 2 , (k) =/ XI(k)[-d(2k) - d(2k±,) + 2Xo(k)Ho(k) - 2X,(k)H1 (k)] i.)

\'111,(k) 2 (k)t-d(2k) + d(2k+I) - 2X 2(k)11 2(k) + 2-V3(k)H3(k)J

V'W23(k)X 3(k)[d(2k) - d(2k+i) + 2X 2(k)II2(k) - 2X 3(k)fI3(k)1

C- 7

C.2 Time-domain Gradient

The equivalent time-domain gradient expression for \VDF2 is given by

2N - I

V,(k) = 1/2N E e,(k)x(j$,)(k), j = 0. 1..2N - 1 (C.25)
1=0

where j is the time-domain weight index, E indic.tes modulo-2 addition for the binary

representations of i and j, and V 3(k) defines the kth block gradient term for each time-
domain weight. The x,(k) and e,(k) terms represent the ith component of x(k) and e(k)

respectively, during the kth block:

x(k) = [X(kN-.') . (kN-) X(kN) .. .X(k + k-l

(k-1)th block kth block

= [xo(k) ... X(2 N._)(k)] (C.26)

and

e(k) = [0 ... 0 o __ - Y(kN)) ... (d(kN+'V-,) - Y(k, +N-,i))

N eros kih erro block

= [eo(k)... C(2,N_)(k)l T (C.27)

U. ing Vj(k), the time donain weight update equation can be specified

h3(k + 1) = h (k) + /,Vj(k) (C.2S)

so that
1io(k + 1) ho(k) Vo(k)

h (k + 1) h (k) + V ,(k) (C 29)

h'2,\7-1 (k + 1) l'2Ni- (k) V 2,-i(k)

C-8

For a N = 4 block size, the expression for the k 2 block becomes

ho(3) ho(2) Vo(2)

h1(3) h1(2) V,(2) (C.30)= -I-fL G.0

h7(3) h7(2) V 7(2)

Each gradient term is calculated using

7

Vj(2) = 1/SE e(2)x(jij)(2), j= 0.1,....7 (C.31)
i=O

where

X(k-) = [X4.1 -5 X-6 X7 X-8 a-9 a10 X11J

e(k) = [0 0 0 0 es e9 ej 0 e11]

The first sequence value in x(k) is X4 because k = 2 and N = 4, so that kN - N = 4.

Similarly, the first nonzero sequence value in e(k) is es because kNV = S. Excluding the zero

valued products in each sum. the time-domain gradient terms are as follows:

The j = 0 term is

Vo(2) = 1/8[c.,1(2)x.,(2) + cs(2).rs(2) + c6(2)X6 (2) + e7(2)a'(2)]

= l/S[csxs + c9 X9 + C1 xI + elIa:iI]

The j = 1 term is

V(2 = l/[.,(2)(2) + es(2)..(2) + e6(2)x 7(2) + er(2)x6 2)j

= 1/S[esx 9 + e9Xs + fo0Xr1 + elXi0]

The j = 2 term is

V2(2) = l/8[e.,(2)x6 (2) + es(.)x 7 (2) + e6(2)x.,(2) + C7(2)a-s(2)]

- l/8[Csi'o + c9X1 I + c10 s + cI IX]

C-9

True j = 3 term is

7-(2) = li'S~e4 (2)X7 (2) + e5(2)xs(2) + er6(2)x5(2) + e7(2)X4(2)1

= 1/S[c-8x11 + eqv 0 + e10x + cI~xsI

The J = 4 term is

7,,1(2) = 1/S[e4j(2)xo(2) + res(2)xl(2)+ ± 6 (2)X2 (2) + e7 (2)X3 (2)]

= 1/[SX 4 + egx 5 + e10x6 + e11x7]

The j' = .5 term is

V.()= 1/S[e4j(2)ax1 (2) + e.5(2)xo(2) + e6(2)x3(2) + e7(2)X2(2)]

= I/8[esx5 + eqX4 + eI 0X7 + el IX6]

The j = 6 term is

Vr(2) = 1/S[P,4(2)x 2(2) + cs5(2)X 3 (2) + e6,(2)xo(2) + e7(2)xl(2)1

= 1/Sksr&x + eqX7 + e10OX, + elix5]

Finally, the j = 7 term is

'7 7 (2) 1 /8[c.i(2)X 3(2) + ce3 (2)x?(2) + (--c(2)x 1 (2) + C7(2)xo(2)]

A\ comparison of the gradlicnt termis just calculated with those calculated for WDI III

Appendix 13. clearly reveals a dlifference. 'rheie are 8 \'VDF2 terms and only 4 WVDFI

gradient tci ins. This i.- ;)eca~ise the number of timie-dumain taps equals the transform size:

WDF2 uses 2N*-po-mnt tra-isforms and WDFL use-s !\-point trautsforms. The first N \,\Dl-2

gradient xaliies ar, eri'. t~o the \'DF1 value multiplied by 1/2. '1 hie 1/2 factor results from

the chiange in transform size.

Appendix D. FDI'1 Weight Update

This Appendix derives the FDF1 frequency-domain gradient vector. Ani example is
presented for the N = -1 block size. A FDF1 time-domain gradient example is also presented
for the block k = 2 using the b~lock size N = 4. This example is used to facilitate a
comparison with \VDFI, WDF2, and FDF2.

D.1 requency-Domain Gi-adicni

The frequency-dom-ain weight vector is specified by

ff(k + 1) 11 (k) + /iX(k) E(k) (DA)

where the X(k), E(k), and 11l(k) vector components are in general complex valued quantities.
The ,notation indicates comp~lex conjugate. The product X'(k)E(k) inl Equation 13.1 defines
the frequency-domain gradient vector VFI(k) for FDF1. Usii-'g VpF (k). Equation D.1 call

IX? exp~ressed as

11(k + 1) Ho !(k) V 10,(k)
I 1(k±+ 1) - 1(k) + i(k) (D.2)

H,, I (k ±- 1) [I-Ik V F ,, -,(k)J

Given that the X(k). E(k), and 11(k) vector components are In general :ornplex. the -.eight
up~dat e equation for the jth tap can be represented as two separate update operations:

I1,(11, (k + 1) =I~ 0 (k) + iVrto(k) (D.31)
II9nag(k + 1) = lmg(k) + p V intg(k) (1).l

wheie 'II 12(k) and IJlrna91 (k) rep~resent the real and imaginary parts of IJ,(k). The terms

VFircnI,(k) and 7"Fiti11g (k) represent the real anid imaginary p~arts Of VF..(k). Therefore.
during the kth block each frequenlcy-clomain tap is decomposed into a real component and
anl Imnagi nary com ponent. The reslpcct i e kth b~lock freqtiency-clomai n grad ient term Vi;1 (k

D)- I

is similarly decompo.sed and the real and imaginary kth block jth gradient ternis are used

to update the respective part of the 113(k) tap. The expansion of VFI(k) in terms of the

frequency-domiin vectors X(k), 1(k), and D(k) follows the same developmnet presented in

Appendix B for WDF1. All time-domain vector notation is the same. The frequericy-domain

vector notation follows the Walsh-domain vector notation with the exception of replacing

the 14' and W - ope rators with the corresponding DFT operators F and .F- '. Therefore.

VFk(k) has the same general form as the Tw1 (k) iesult (Equation D.5), such that

VFi,(k) X(k)[D,(k) - Xo(k)IHo(k)]

= .k 7 , , (k) . ,_ , ; (k)[D _(k) - X _(k)II u,(k)l

The forward and inverse DFT pair used in the development is given by [5:1501

N-i

X1, = E x,1F;, (D.6)

and
N-i

x,= IIN > X,, I ?'v (D.7)
n=O

where
1.\. " - ' l (1).8)

D.2 Tint(-domain Gradi,.nl

The equivalent time-d(omain gradient expression for FDF I is given by

N -

g7(k) = e2(k)x,(k), j = 0.1 - ().9)
t=0

The c,(k) terms represent the ith component of the time-domain error vector e(k) such that

e(k) = F '{E(k)}

= [(dk - Y,V) (dk,,+,V-I - :A,\,-,)]T

D-2

[eo(k) ... e,(k)]T (I).10)

A brief discussion of the time-domain output vector is necessary to define x,(k). The time-
domain kth block output vector is calculated by l)erfnming the circular convolution of the
kth block time-domain weight vector li(k) and the kth block input vector x(k). Accordingly,

the output vector is defined

y(k) = x(k)h(k) (D.11)

where
•o(k) x(. -_)(k) ... xj(k)

x() x(k) xO(k) 2(k) (D.12)

x.,._,(k) X,,)(k) ... xo(k)

and x,(k) specifies the ith value of x(k) (See Equation 2.35) while x7T(k) is the ith row of

Using 7-(k) to denote the jth component of V(k), the time domain weight update

equation can be specified

h(k i- 1) = h,(k) + ,V,1(k) (D.13)

so that
ho(k + 1) ho(k) Vo(-)
hI(A. + I) hI(k-) V,(k;)

/, -l (k + 1) h;,v-_ (/) ,--(k,)

For a = 4 block size. the expression for the k = 2 block becomes

ho(3) ho(2) V0 (2)

h,(3) h,(2) V,(2)
- +/, 1 2 (D.15)

h.2(3) h2(2) V-.(2)

h3(3) /3(2) V3(2)

)-3

Each gradient term is calculated using

3
V3 (2) E Ze i(2) xd j (2) 0. 1... .3 (D. 16)

i=O

where

X9 X8i 11 X10]

X(k) = 9 I i10

X10 X9 X8 X11

X11 ItO X9 X8

e(k) = [es e9 elo e11]

The xo(k) term is xr, because k = 2 and A. = .1 so that k.N= S. The j =0 term Is

Vo(2) = eo(2)xo(2) + l(2)xl(2) + 2(2)X2(2) + 3(2)X3(2)I

The j=I term is

V1 (2) [co(2)X3(2) + I(2)xo(2) + c2(2)r 1 (2) + c3(2)x--(2)J

-CX jsIx "t C9 1s + -,r +1 C) ~;1.L1O

The j=2 term is

V 2 (2) = 1(0(2)x2(2) + c I(2)X3(2) + c(()10(2) + a(2)xr1 (2)]

= lcs-r 10 + £q.rI I + e, aos + C II X91

Finally, the j = .3 term is

V3 (2) - ko(2)x,(2) + c(I(2).r.(2) + (2(2)13(2) + C3(2)xo(2)]

- [($19 + (9110 + COXII + CjI1~j

D-4

A comparison of the terms calculated above with similar calculations for \VDFI in

Appendix 13 reveals that tie first gradient term for both are equal. Subsequent terns have

individual products that match products .n corresponding \\'DFI gradient terms.

ID..i

Appendix E. FDF2 Weight Update

This Appendix derives the FDF2 frequency-domain gradieit vector. An example is

presented for the A' = 2 block size. A FDF2 time-domain gradient example is also presented

for the block k = 2 using the block size N = 4 and is used to facilitate a comparison with

FDF1.

E. 1 Frequency-Domain Gradient

The frequency-domain FDF2 weight vector is specified by

V(k)

0
H(k + 1) = H(k)+ y-"

0

= H(k) +YE 2(k) (E.1)

where T is the forward FFT operator and the vertical vector is zero padded with N zeros.

V(k) is defined

V(k) = first N terms of .F-' {X*(k)E(k)} (E.2)

Referencing Equations E.1 and E.2, X(k), E(k), and H(k) vector components are, in general,

complex valued quantities. The vector X*(k) is the complex conjugate of X(k). The resul-

tant vertical vector in Equation E.1 defines the FDF2 gradient vector VF2(k). The FDF2

filtei r,-(luires the use of 2N-point transforms due to the .50% overlap method employed in

determining the input vector. Accordingly, tle filter uses 2Ar fiequency-domain taps to filter

the data. In vector form. the weight update equation can be expressed as

Ho(k + 1) Ho(k) VF20(k)

H,1(k + 1) H,(k) + V F.2, (k) (E3)

H2N-1(k + 1) H2N-(k) '72,-E (k)

E- I

Given that the X(k), E(k), and H(k) vector components are generally complex, the weight

update equation foi the jth tap can be represented as two separate update operations:

Hreal,(k + 1) = IIreai,(k) +/,VF ... 1,(k) (E.4)

Himag,(k + 1) = Htmag(k) +,ItVFiimag(k) (E.5)

where Hrcal,(k) and Hzmag,(k) represent the real and imaginary parts of HJ(k). The terms

VFareal,(k) and VFlt,,a g(k) represent the real and imaginary parts of -7F],(k). Therefore,

during the kth block each frequency-domain tap is decomposed into a real component and

an imaginary component. The respective kth block frequency-domain gradient term VF2, (k)

is similarly decomposed and the real and imaginary kth block jth gradient terms are us(d

to update the respective part of the H3(k) tap.

At this point we begin the Vp 2(k) derivation by defining the kth block FDF2 time-

domain input vector x(k). Using the notation x, to represent the input sequence, the N input

sequence values which define the kth input block can be represented by XkN+,, where i =

0, 1,..., N- 1. Next, the N-point previous block and N-point current block are concatenated

to produce the kth block input vector, defined as

x(k) = [X(kNVN) ... X(kN..1) X(kN) .. X(kN+N-1)] (E.6)

(k-I)th block kt block

The kth block input transform matrix X(k) is gixen by

X(k) = diag{,F'(X(kNN) ... X(kN-1) X(kN) ... X(k+N-1)} (E.7)

(k-)th block kth block

where .Y is the forward DFT operator. The forward and inverse 2N-point DFT pair is

defined [5:150]
2N-1

x°= ,,2W (1E.8)
1=0

and
2N-i

Xi= 112N Z .,\' i (E.9)
n=0

where

142N = C-)2r-/2N (E.10)

Repres-mting the DFT transform components of the 2N-point kth block input vector as

X,,(k)i X(k) can be expressed as

X0 (k) 0

X(k) X, X(k) (E.11)

0 X2N1I(k)

The first step in deriving the frequency-domain expression for E(k), is the evaluation of the

kth block frecquency-clomain output vector Y(k):

Xo(k) 0 Ho(k)

Y (k) =, X(k) H, (k) (E. 12)

0 X2 NT..(k) H2Nv- 1(k)

Performing the multiplication of the 2Nx2N' matrix X(k) and 2ANx1 vector 11(k) yields the

2NxlI vector Y(k) given by

Y~)X MH,(k) (E. 13)

AY2N1 (k)H 2A-I (A)

Taking the inverse DET of Y(k) and saving the last N values (See Section 2.2.2.2) pr'odutce.$

he kth block output vector. Representing the N output sequence values which dlefine the

kth outpjut block as YkN+,. where I = 0, 1,- A" .. - 1. the kth block tinie-clomain outp~ut

block vector is defined

y(k) = [Y(kN),.. , Y(kN+,N-l)J'

= last1 NV te?-ns of .F-'{X(k)H-(k)} (E. 14)

The .F-1 operator used in Equation E.14 is the inverse DFT operator. Using the inverse

DFT sum (Equation E.9), the y(k) vector can be expressed as

1 YkN ,=j' V17+lnX (k)H(k) (.5
2NN1VI7(~y(k) (E.15)

1:,2N-1 |4r-(2N-1,(k)H,,(

YkN+N-1 -n=O 2 N) (k)H(k)

The frequency-domain error vector E(k) for the kth block is defined by

I

E(k)--T-{[0...O0 (d(kr) - (kN)) ... (d(kN+N-'-1) - Y(kN+N-))Il} (E.16)

N zeros kth error block

where the d(kN+,) terms represent the kth N-point desired sequence block. Using the linear

property of the DFT, Equation E.16 can be expressed as

E(k) - F{[0...0 d(kN) ... d(kN+N-1)] T }

N zeros

- '"[[O 0 Y(kN) ... Y(;:N+N-)I T)

N zeros

= E,(k)-E 2 (k) (E.17)

Evaluation of

E2((k) =F 1{[0 0 Y(kN) ... Y(kN+N-I) T } (E.18)

N zcros

using Equations E.Sand E.15 produces the vector

E 2 - ,Ni= N 7--1= O 147- I." A ' ,(k)H ,,(k)
".2N-1 V 12 N- 1 l"v .- ,

E2(k) = N=0 2N 2.)V (E.19)

F2N-I '2N-I /(2-1/ -l)'-%,X,, (k)H.(k)
i=N .- n1=0 2

E-4

The rth component of Equation E.19 can be expressed as

2N-1 2N-1

E2r(k) = 1/2AT N 2N (k)Hn(k), r = 0,1,...,2N - 1 (E.20)
t=N n=O

Evaluation of
El (k)-= F[0 ... 0 d(kN) ... d(kN+N-1)]I T (E.21)

IV eros

produces
2N-1

Ei(k) = 1/2N E WH\Nd(k.T+,_..), r 1 .1. A - 1 (E.22)
I=N

such that

X-(k)E(k) = X-(k)EI(k) - X*(k)E 2(k) (E.23)

At this time. the inverse DFT is performed on Equation E.23. Taking the inverse DFT
of the product involving El(k) produces

2N-1

VlE(k) = 1/2A E E1 .(k)X;(k)W§5N (E.24)
r=O

Substituting the result from Equation E.22 for EI)(k) gives

2N-1 2N-I
V1 1(k) = 1/2N 1 41 kjI4'r5.A'(k)d(kN.-N) (E.25)

r=O t=N

where p = 0,1 2N - 1. Taking the inverse DFT of the product involving E 2(k) produces

2N- !

' 2 ,(k) = 1/2N 1 E"'2r(k)(k) 2N (E.26)
r=0

and substitution of the result from Equation E.20 for E2,(k) yields

2N-1 2N-1 2N-i
V2 ,(k) = (1/2N) 2 5r / 5 "' X; (k)X, (k) H. (k) (E.27)

r=O t=N n=O

where p = 0,1,..., 2N - 1. The next step in deriving Vr 2(k) is to replace the last N values

of V 2(k) and 7 1(k) with zeros and forwaid tran,,form the resulting vectors to produce two

E-5

frequency-domain vectors: identified as VF22 (k) ai, 1 VF2 (k) respectively. VF 2(k) is defined

by the difference of the resulting frequency-domain vectors:

\7 2 (k) = VF2 ,(k) - VF 2 (k) (E.28)

which can be expressed as

N-I 2N-1 2N-I

VF2q(k) = 112N Z,~ ,rr~~ Z S ~ ~ k+,N
p=O r=O t=N

N-I 2N-l 2N-1 2N-1

-(112N 2 2 2N 2q,,,-'N-t ,;X,(k)X,,(k)H,,(k)
p=O r=O t=N n=O

q = 0, 1,...,2N- 1 (E.29)

This is the solution presented in Chapter II.

E-6

For N = 2 the frequency-domain gradient real and imaginary (J) terms are as follows:

VI-2 ,(k) = (d(2k)/4)[2X (k) - Xj*(k)(1 + j) - X;(k)(1 - J)]

+(d(2k+I)/4)[2Xj(k) - Xj(k)(1 -)-XZ(k)(1 +i)

-K.o (k) 1211o(k) - (1!12)1X 1 (k) 12 H,(k) (I

--(I12)1X 3(k) 12113 (k)(1 - j) +±(1j2)Xo(k)X1k;(k)Ho(k)

+ (1 /2) Xo(k) X;U-) Hu (k) + (1 /2)Xj (k) X(k H, (k) (I +
+(j/2)XY*(k)X 2 (k)H 2(k) - (j'/2)XY;(k)X 2(khI(k)

±(1/2)X(k)X 2 (k)H 3 (k)(1 - J)

\7F2 (k (d(2 k) /4) [Xj (k) (1I - 2X,*(k) + X3 (k) (I + j)]
+ ((2+ 1 /) Xj k)(1- A) - X (k) (I - j) + 21jX;(k)]

-1XI(k) 12 HI(k) - (1/2)1Xo(k)12 Ho (k) (1 - i
- (1 /2) 1-2 (k) 1211 2 (k)(i j + (1 /9)Xo (k) X B)1J(k) (I

±(1/2)X (k)Xj(k)Hj(k'} + (1/2)X;(k)Xj(k)II 1 (k)

±(1/2)X;(k)X 2 (k)HI2 (k)d +J)

-(j/2)X(k)X 3 (k)H 3(A) + (j/2)X. (k)X3(k)II 3 (k)

VF2,(k) =(d(2k)11)-X,(k)(1 - j) + 2X;(k) - X3(k)(1 +j)
A-(d(2 k+1)/4)[-2XA (k) +I X'(k)(1 + J) + X; (k)(l)

- 1 2(k)I 1 2 2(k) - (1 /2)1 X, (k) I'll,(k) (I

1 /!2) 1)3 (k) 12 1-.(k) (I +j + i'2(A) X) 112 (k)

(1 /2) X (k)X2 (k) H-2 k) - ,').V"k)\ '1(kji(k) (I -- j)

±(1/2)A'(k)X3 (.)110 (k)(l + J)
-(J12)X (k)Xo(k)HoI(k) + (j/12)X (k)XVo(k)IHo(k)

E- 7

VF2 ,(k) = (d(2k)/4)[Xj(k)(+ j) +2X (k)(1 - j) -2XV(k)I

+(d(2k+1)/4)[Xj(kK1 ±j) - X(k)(1 -') -2jX;(k)]

- V 3(k)12 H3(k) - o 0 (k) j2 Ho (k) (I + j
-(1/2)jX2(, "I?10 (1/2)Xo(k)~kJ 0 k(j

+(1/2)X;(k)X2 (k, !; I j) (1/2)XVj(k)X-3(k)H 3(k)

+ (j/2)Xj (k)Xi (k)]. - (j ,21Xj k)Xj (k)111 (k)

E.2 Time-doniain Gradient

The equivalent time-domain gradient expression for FDF2 is given by

VkN=2N
-1

V,(k = > ej(k)x(,)(,,) I ,1 (E.30)

\vhc:-e j is the time-domain weight index and 7)(k) defines the kth ')lock gradient term for
each time-domnain weight. The x,(k) and c,(k) terms rep;,?s-nt the ith component of x(k)

and e(k) ire:;;,ctivelv. in thc kth block:

xt k) = tXfkN'V.,\) .. (kA'-) X(kA') ... X(kN+.--)]

(k-I)th block kth block

= [xo(k) .-. X(2jV....)(k)J (E.31)

and

e(k) = 10 ... (d(kV) - !/(k)) .. (d(kN~.I) - Y(kV+N-]))I'
A zeros kib error bl.,ck

= leo(k) . .. C(2.NT..)(k)IT (E.:32)

Using 7',(k), the time-domain weight update equation c'an b~e specified

h.,(k + 1) = hj(k) + ItV 3(k) (E.33)

so that
Io(k+l1) b0(k) Vo(k)]

hi(k + 1) - h1(k) + V, (k) (E-34)

hi- 1 (k + ~jJ [hNr1 (k) j VNIv k

For a NT 4 lock size, thc exprtession for the k =2 biock b~ecomes

[12(3) ho(2)] [Vo(2)

h/3(3) /1h3(2) J [\73'(2)J

Each graclhait termp is calculated using

T/,(2) 1: cje(2)x(j-j(2), j=0,1 ... 3 (E.36)
1=4

where

N(k) =[X 4 -1'5 X6 X7 Xq X9 XIO X1

e(k) =[0 0 0 0 es e9 eo ell]

since A" = 4, k = 2. and therefore the x(k) index (kN" - N + I) equi!s (4 + i)and the e(,'-

ind.'z-. for the last A values. (kjV + i). equals (8 + i*).

Excluiding the zero valued products in each sumn. the time-dom-ain gi adieiit termns are

as follows:

Ihe j=0 term is

0()= [c.(2)x.1(2) + e.5(2)xs5(2) + C6 (2)x 6(2) + C7(2)X 7(2)1

= [csxS + Cqr 9 + eiOxiO -- c11x11

The j = 1 term is

V1 (2) = [e4(2)x3(2) + es(2)x,,(2) + e6(2)xs(2) + e7(2)x6(2)]

= [e 8 X7 + e9 X8 + eloX 9 + ellXiol

The j = 2 term is

72 (2) =[e 4(2)X2 (2) + e5k2)X 3(2) + e6(2)x,4(2) + e7(2)x5(2)]

= [e 8 x 6 + e9 X7 + e1ox 8 + elxg]

Finally, the j = 3 term is

V3 (2) = [k-(' 2)'~'- ,-) w2(2) + e6(?)X3(2) + C7(2)x.,(2)]

= [esax + -x., ,- e1ox7 + elixs]

In comparison to the FDF1 time-domain gradient terms (Appendix C), the FDF2 time-

domain gradient terms above are the cross-correlation of x(k) and e(k). Since the FDF1 filter

performs circular convolution, the gradient terms are .a! idated using the product of e(k)

and the corresponding column of the kth block circulant matrix.

I'-I0

Appendix F. Program Listings

F. 1 DFJ Filter Listing

This is the Turbo Pascal 6.0 listing of the WDF1 program.

Program WDF1;
{$N+}
Uses Printer,CRT,DOS;
CONST

N=8; (**N is block size*)
P=3; (*N=2**P *
datasize= 1000;
Misadjust=0.1;

TYPE

RealArrayN2=ARRAY[O. .(N-i)] of real;
InputArray=ARRAY[0. .datasize-1] of real;
OutputArray=ARRAY[0. .datasize-1] of real;
FArray=ARRAY[0. .P,1. .N,0. .N-1] of Real;

VAR
hr,m,s ,slOO:Word;
StartClock, StopClock:Real;
data: RealArrayN2;
F:FArray;
gain.mu,Pbin,X,H,W,ERR,V2,input-block,grad,D,Yw:RealArrayN2;
desired,input :InputArray;
error, y :OutputArray;
isign ,nn, Block-num ,k: integer;
mu: real;
infile ,desiredf ile,errorf ile ,outf ile,weighto :text;
weightl1, weight2 ,weight3 ,weight4 :text;

Procedure Init-.var

(*This procedure initializes all variables.

Called By:
Main Program

Routines Called: None

F- i

Procedure Init-var;

Var

1'j ,i:-intege-;

Begin

Block-num:=0;
For j:0O to datasize-1 Do

Begin

error~j] :0;

desired[j :0O;

input [i :0O;
y[j :0O;

End;

For j:0O to (N-1) Do

Begin

X[j] :0;
W[j] :0;

H~jI :0;

ERR~j :0O;

V2[j] :=O;

input-block[j] :=O;

grad Ii]:0O;
gain~mu[j] :0;

Pbin[j] :0;

D[j] :0;

Yw[j] :0;

End;

For j:0O to P Do

For i:=1 to N Do

For l:=0 to N-i Do

F[j,i,l] :=0;

End;

Procedure Open input files

(*Called By:
Main Program

(* Routines Called: None

Procedure Open-nput-.files;

Begin

F-2

Assign(infile, 'B:tstinpt2.Dat');
Assign(desiredfile, 'B:tstdes2.Dat');
Reset(infile);
Reset(desiredfile);

End;

Procedure Open output files

Called By:
*Mkin Program

Routines Called: None

Procedure Open.output-files;
Begin

Assign(errorfile, 'B:Error.Dat');
Rewrite(errorfile);

Assign(outfile, 'B:Out.Dat');
Rewrite(outfile);

End;

Procedure Close input files

Called By:
Main Program

Routines Called: None

Procedure Close-input-files;
Begin

Close(infile);
Close(desiredfile);

End;

Procedure Close output files

Called By:
Main Program

Routines Called: None s)

Procedure Close-outputfiles;

I.- 3

Begin
Close(errorfile);

Close(outfile);
End;

Procedure Clockan;

Begin

GetTime(hr,m,s,s00);
StartClock:=(hr*3600)+(m*60)+s+(slOO/100);

End;

Procedure ClockOff;

Begin
GetTiie~hr,m,s,sl0O);

StopClock :=(hr*3600)+(m*60)+s+(si0O! Ii/):
WriteLn('Elapsed time = ',(StopClock-StartClock):0:2);

End;

Procedure Calc-nu=blocks a)
* .)

This procedure calculates the number of blocks to a)
*a be procossed. a)

(* Called By: a)

(* Main Program a)
(a Routines Called: None a)

Procedure Caic.numblocks;

Begin

Block-num:=datasize div N;

End;

(a Procedure altran

* This procedure performs the forward and inverse l-point -)
(Fast Walsh Transform (F-W). This routine calculates a)
(the forward and inverse transforms using the sane loop: -)
(the forward transfor= requires the loop result to be -)

nultiplied by a factor of /(1). -)

[: !

(* The algorithm is recursive and requires P stages, where
(, N=2**P. This routine requires no multiplications
(* and NLog(N) summations, where the logarithm is base 2.

(*ic Called By:

Procedure PastCurrentBlock
Procedure Ca]'A.late-y
Procedure Calculate-error
Procedure Calculate-Gradient
Procedure Update-Weights

(* Routines Called:
None

(* Variables:
P: N=2**P

isign : indicates inverse or forward transf6rm
data[j] : input and output,
F[P,i,j] :Fast Walsh Matrix result

j=O,i,..2N-)

Procedure Waltran;

Var
j,l,i,jmax,lmax,exponent:integer;
jlog,jinv:real;

Begin
For 1:=1 to N Do
Begin

F[O,l,O]:=data[l-i];
(* WriteLn(Lst, ' F(1,O,1,O,')= ',F[O,1,O]); *)
End;

For i:=O to P-i Do
Begin
jlog:=(i+l)*Ln(2);
jinv:=Exp(jlog);
jmax:=Round(jinv);

WriteLn(Lst, 'jmax= ', jmax); *)
lmax:=N Div jmax;

(* WriteLn(Lst, ' kmax= ', kmax); *)
For 1:=1 to lmax Do

Begin
For j:=O to jmax-i Do

Begin
exponent:=(j~l) Div 2;

F- 5

If Odd(exponent) then
F[i+1,l,j]:=F[i,2*l-i,(j Div 2)]

-F~i,2*l,(j Div 2)]
else
F[i+i,1,j]:=F[i,2*l-i,(j Div 2)]

+F[i,2*l,(j Div 2)];

End;

End;
End;

For j:=O co (N-i) Do
Begin

if isign=-i then
data[j] :=F[P,I,j]

else
data [j] :=(I/N)*F[P,I, j]

End;
End;

Procedure Prepare-input-block-for-Waltran

(*This routine enters the data values into data[j] in
(*preparation for forward or inverse DWT.

Called By:
Procedure Past-Current.Block
Procedure Calculate-y
Procedure Calculate-~error
Procedure Calculate-.Gradient
Procedure Update-wyeights

Routines Called: None

Procedure Prepare-input-block-for-Waltran;

Var
j :integer;

Begin

if isign =1 then

F-6i

For j:0O to (N-1) Do
begin

data~j] :=input-.block[j];
end;

if isign =-1 then
For j:0O to (N-i) Do

begin
data[j] :=V2[jJ;

end;

End;

Procedure Past-Current-Block

This routine concatenates the current and previous blocks *
together: [(previous)(current)]. Each block is N points *
long; the combination is 2*N points long.

Called By:
Main Program

Routines Called:
Procedure Prepare-input-.block-for..Waltran
Procedure Waltran

Variables:
input-.block[j] : (previous blck,current bick)

Procedure Current-input-block;
Var

j :integer;

Begin

isign:=1;
For j:0O to (N-1) Do
Begin

input-.block~j :=input[j+k*N];
(*WriteLn(Lst, 'inputblock(', j,')=', input~block[j]); *

End;
P1 epare-nputblock-for.Waltran;
Waltran;

F-7

End;

Procedure Current-desired-block

Procedure Current-desired-block;

Var
j:integer;

Begin

isign:=;

For j:=O to (N-i) Do

Begin

input-block[j]:=desired[j+k*N];
End;

Prepare.input-block-forWaltran;

Waltran;

For j:=O to (N-i) Do

Begin
D[j] :=data[j];

(* WriteLn(Lst, ' D(',j,')= ',D[j]); *)

End;

End;

Procedure Load-input

(* This procedure reads in the input sequence from a data

(* file.

Called By:

Main Program
Routines Called: None

Procedure Load-input;

Var
j :integer;

Begin

For j:=O to datasize-i Do

F-8

ReadLn(infile,input[j]);

End;

Procedure Load-desired

(* This procedure reads in the desired sequence from a data *)
(* file.

Called By:
Main Program

Routines Called: None

Procedure Load-desired;
Var

j:integer;

Begin

For j:=O to datasize-I Do
ReadLn(desiredfile,desired[j]);

End;

Procedure Write-output

This procedure writes the filter output and error
vectors to data files.

Called By:
Main Program

Routines Called:None

Procedure Write-output;
Var

j:integer;

Begin
For j:=O to datasize-1 Do

Begin

F-9

WriteLn(outfile,y[j]);
WriteLn(errorfile,error[j]);

End;

End;

Procedure Diagonal-ofX

(* This procedure creates the data vector X.
(* The X data vector represents the diagonal component
(* of a diagonal matrix that contains the DWT of the
(* concatenated previous and current input blocks.

Called By:
Main Program

Routines Called: None
Variables:

X[j] : diagonal values

Procedure Diagonal-ofX;
Var

j:integer;
power:real;

Begin

For j:=O to (N-i) Do
begin

X[j] :=data[j];
WriteLn(Lst, ' X[',j, '] = ', X[j]); *)

end;

end;

Procedure Calculate-avg-input-bin-plr;
Var

num,j:integer;
Begin
num:=Blocknwa-1;

F-10

For k:=l to Block-num-1 Do
Begin

Current-input-block;
For j:=O to (N-i) Do
Pbin[j] :=Pbin[j]+Sqr(data[j]);

End;
For j:=O to (N-i) Do

Begin
Pbin[j] :=(I/num)*Pbin[j];

(* WriteLn(Lst, ' Pbin(', j, ') =',Pbin[j]); *)
End;

End;

Procedure Calculate-mu;
Var

j:integer;
avgPwr:real;
Begin

avgPwr:=O;
For j:=O to (N-i) Do
Begin

(* gain_mu[j1:= Misadjust/(Pbin[j]+l.OE-8); *)
av.gPwr:=avgPwr+Pbin[j]*(1/N);

End;
(* gain-mu[6] :=gain-mu[71; *)

mu:=Misadjust/avgPwr;
WriteLn(Lst, ' gain constant mu = , mu); *)
WriteLn(Lst, ' average power = ',avgPwr); *)

End;

Procedure PerformMatrixMultiply

(* Multiplies a 2Nx2N matrix by a 2Nxl dimension vector. *)
(* The matrix in all cases is a diagonal matrix so the
(* routine automatically ignores the off diagonal terms
(* during the multiplication.

Called By:
Procedure Calculatey

F-li

Procedure Calculate-Gradient
Routines Called: None
Variables:

V2[j] : the resulting 2Nxl vect,,':

(************************************ *** ********************)

Procedure PerformMatrix-Multiply(var M,V: RealArrayN2);

Var
j:integer;

Begin
For j:=O to (N-i) Do

Begin

V2[j] :=M[j]*V[j];
End;

End;

Procedure Calculatey

(* This procedure calculates the output sequence values
(* for the current block being processed. The output is
(* equal to the last N terrs of the inverse DWT of the
(* product of X and the walsh domain weight vector.

Called By:
Main Program

Routines Called:
Procedure Waltran
Procedure Prepare.input-block-forWaltran
Procedure PerformMatrixMultiply

Variables:
y[j] : filter output

************************* *************************************)*

Procedure Calculate-y;
Var
j:integer;

V-12

Begin

PerformMatrixMultiply(X,H);
For j:=O to (N-i) Do

Yw[j] :V2[j];
isign:=-i;
Prepare-input-block-forWaltran;
Waltran;
For j:=O to N-i Do
Begin

y[k*N+j] :=data[j];
WriteLn(Lst, ' y(',k*N+j,')= ',y[k*N+j]); *)

End;
End;

Procedure Calculate-error

(' This procedure calculates the error sequence values for *)
(* the current block and the complex error vector.
(* The error block for the current inp"t
(* block equals the current desired block minus the output *)
(* for the current input block. The error vector
(* ERR[j], equals the FFT of the zero padded error block:
(* DWT[N zeros, error block].

(* Called By:
Main Program

(* Routines Called:
Procedure Prepare-input-block-forWaltran
Procedure Waltran

(* Variables:
ERR[j] : the DWT of the error sequence

for the current block 4)

Procedure Calculate-error;
Var

j:integer;

Begin
For j'=O to N-i Do

F-13

begin
ER,[j] :=D[j]-YwiLj];
V2[j] :=ERR[j];

end;

isign:=-1;
Prepare-input-blockforWaltran;
Waltran;
For j:=O to (N-i) Do

begin
error[k*N+j]:=data[j];

(* WriteLn(Lst, ' e(',k*N+j,')=', error[k*N+j]); *)
end;

End;

Procedure Calculate-Gradient

(* This procedure calculates the gradient sequence for the *)
(* current block being processed. The gradient sequence
(4: equals the first N terms of the inverse DWTT of the
(* product of X and the error vector E.

(* Called By:
Main Program

(* Routines Called:
Procedure PerformMatrixMultiply
Procedure PrepF-e-input.block-forWaltran

Procedure Walt-3n *)
(* Variables:

grad[j]:walsh-domain gradient vector for block k
(* TgradFj]: ti -domain gradient ve-tor for block k

(******** * ******************'''~**)

Procedure Calculate-Gradient;

Var
j:integer;
Tgrad:RealArrayN2;

Begin

PerformMatrixMultiply(X,ERR);
For j:=O to (N-I) Do

F-I.I

Begin

grad[j] :=V2[j];
(* WriteLn(Lst, ' Grad(', j, ') ', grad[j]); *)

End;

isign:=-1;

Prepare-input-block-forWaltran;

Waltran;

For j:=O to (N-i) Do

Begin

Tgrad[j] :=data[j];
(* WriteLn(Lst, ' grad(',j,')= ',Tgrad[j]); *)

End;

End;

Procedure Update-weights

(* This procedure updates the filters tap weights. The

new weights equal the old weights plus the product of the *)
(* gain constant and the gradient vector. The

(* gradient vector equals the DWT of the gradient
(* sequence padded with N zeros: DWT[(grad seq), N zeros]. *)

Called By:
Main Progiam

Routines Called:
Procedure Prepare-input-block-forWaltran

Procedure Waltran

Variables:

H[j] : Walsh domain weight vector

Procedure Update-weights;

Var

tap,j:integer;

Begin

For tap:=O to (N-i) Do

begin

H[tap]:=H[tap]+mu*grad[tap];

F- 1.5

WriteLn(Lst, I H(', tap, ') ,H[tapP);

end;

End;

Procedure time-domain-wts

Procedure time..dornain..yts;

Var

j :integer;
Begin

For j:=O to (N-1) Do

Begin
V2[j :=H[j];

WriteLn(Lst, 'H(',j,')=', H[j]); *

End;

isign:=-1;
Prepare-input-block-.for-Waltran;

Walt ran;
(* WriteLn(Lst, I Block 1, k); *

For j:0O to (N-i) Do

Begin
W[j] :=data[j];
WriteLn(Lst, 'W(', j, ') =I, WjI); *

End;

End;

Procedure Set-weights

Procedure Set-weights;

Var
j :integer;

Begin

W[0] :=48.4796;
W[1]:=5.6844;

W[1]:=5.0732;

W[3 :=10.7032;

For j:0O to (N-i) Do

input-.blockl]:=W[j];
isign:=1;
Prepare-nput-block-.jor-Waltran;
Waltran;

F-I16

For j:0O to (N-i) Do
H[j] :=data[j]

End;

(*******************Main Program *************

Begin
Onen-input-files;
Open-output-files;
Init-.var;
Load-input;
Load-.desired;
(* Clock~n; *
Calc-.numblocks;
Calculate.avg-nput-bin-.pwr;
Calculate.mu;
(* Set-.weights; *
For k:=O to Block-.num-i Do

Begin
WriteLn(I processing block', k);
Current-.input-.block;
Diagonalof..X;
Current-.desired..block;
Calculate-y;
Calculate-.error;
Calculate-.gradient;
Update-.weights;
(* time-.domain..yts; *
end;

(* time-dornain-wts; *
Write-output;
Close.input-.files;
Close.output..files;

End.

F-2 IVDF2 Filter Listing

This is the Turbo Pascal 6.0 listing- of the WDF2 programn.

Program VDF2;
{sz11+1
Uses Printer,CRTI,DOS;

COZIST
11=8; (*** N is block size*)
datasize=1000;
PMisadjust0. 1;
P=4; (*2N=2**P

TYPE

Real I'rray?12= ARRAY (0. . (2*N)-I1] of real;
Inputflrray=ARRAYEO. .datasize-1] of real;
Outputllrray=ARRAY[O. .datasize-1) of real;
FArray=ARRAY [C. .P,z. .(2sN),O. .(2*!i-.)I of Real;

VAR,
hr,im,s 1s100:Word;
StartClock ,StopClock:Real;
data: RealkrrayN2;
F:FArray;
gain~mu,Pbin,X ,H,W,ERR,V2,i-nput-.block,grad:Realrrayl2;

deie,input inputArray;
error,y:OutputArray;
isign,nn,Block-.nunk: integer;
riu:real;
inf ile, des iredf ileerrorf ile, outf ile, weigntO: text;
weight1 ,weight2,weight3,weight4 ,weightS ,weight6 ,weight7 :text;

Procedure Init..yar

C~This procedure initializes all variables.

Called By:
Cs Fin Program
C.Routines Called: None

Procedure Init..yar;
Var

l~j .i:integer;

Fis

Begin

Block-num: =0;
For j:0O to datasize-1 Do

Begin
error[j] :0;
desired~j] :0;
input [j :0O;
y[j] :0;

End;
For j:0O to (2*N)-1 Do

Begin
X[j].:0;
W[jJ :0;
H[jl :0;
ERR[jJ :=0;
V2[j] :0;
input..block[j]:: 3;
grad~j :0O;
gainjriu[j] :0;
Pbin[jJ :0;

End;
For j:0O to P Do

For i:=1 to (2*N) Do
For 1:=0 to (201-1) Do

F[j ,i,lJ :0;
End;

Procedure Open input files

(* Called By:
Main Program

(* Routines Called: None

Procedure Upenjinput-files;
Begin

Assign(infile, 'B:tstinpt2.Dat');
Assign(desiredfile, 'B:tstdes2.Dat');
Reset(infile);
Reset(desiredfile);

End;

F-19

Procedure Open output files

Called By:
k* Main Program

Routines Called: None

Procedure Open-output-files;
Begin

Assign(errorfile, 'B:error.Dat');
Rewrite(errorfile);
Assign(outfile, 'B:out.dat');
Rewrite(outfile);

End;

(** **************)

Procedure Close input files

Called By:

Main Program
Routines Called: None

Procedure Close-inputfiles;
Begin

Close(infile);
Close(desiredfile);

End;

Procedure Close output files

Called By:

Main Program
Routines Called: None

(* *********** **** ********** **** *** ******* ** **** **** *** ******** *

Procedure Close-output-files;
Begin

Close(errorfile);
Close(outfile);

End;

Procedure Calc-numblocks

This procedure calculates the number of blocks to

F-20

be processed.

Called By:
Main Program

Routines Called: None

Procedure Calc-numb?.ocks;

Begin

Block-num:=datasize div N;

End;

Procedure Waltran

(* This procedure performs the forward and inverse 2N-point *)
(* Fast Walsh Transform (FWT). This routine calculates

(* the forward and inverse transforms using the same loop:
(* the forward transform requires the loop result to be
(* multiplied by a factor of 1/(2N).

(' The algorithm is recursive and requires P stages, where
(* 2N=2**P. This routine requires no multiplications

(* and 2NLog(2N) summations, where the logarithm is base 2. *)

(* Called By:

(' Procedure PastCurrentBlock
Procedure Calculate-y

(* Procedure Calculate-error

(' Procedure Calculate-Gradient
(* Procedure Update-Weights

(* Routines Called:

None
(* Variables:

P: 2N=2**P

(' isign : indicates inverse or forward transform

(* data[j] : input and output
F[P,I,jJ :Fast Walsh Matrix result

j=0,1,..2N-1

Procedure Waltran;

F-21

Var

j ~l,i,jmax,lmax,exponent:integer;
jlog,jinv:real;

Begin
For 1:=1 to (240) Do

Begin
F[0,1,0] :=data[l-l];
(*WriteLn(Lst, I F(1,0,1,0,')= 1,F[0,1,0]); *

End;
For i:=O to P-1 Do
Begin
jlog:=(i+i)*Ln(2);
jinv:=Exp(jlog);
jmax:=Round(jinv);

WriteLn(Lst, 'jmax= ', max); *
lmax:=(2*N) Div j'max;
(* WriteLn(Lst, I kmax= ',kiax); *
For 1:=1 to imax Do
Begin
For j:0O to jmax-i Do
Begin
exponent:=(j+i) Div 2;
If Odd(exponent) then

F[i+1,l,j]:=F[i,2*1-i,(jDi2)
-F[i,2*l,(j Div 2)]

else
F[i+,l,j]:=F[i,2*1-1,(j Div 2)]

+F[i,2*l,(j Div 2)];

End;

End;
End;

For j:0O to ((2*N)-1) Do
Begin

if isign=-i then
data[j :=F[P,i,j]

else
data[j :=(1/(2*N))*F[P,1,j];

End;

End;

Procedure Prepare-input-block-forWaltran

(* This routine enters the data values into data[j] in
(* preparation for forward or inverse DWT.

Called By:
Procedure PastCurrentBlock

Procedure Calculate-y
Procedure Calculate-error
Procedure Calculate-Gradient
Procedure Update-weights

Routines Called: None

Procedure Prepare-input-block-forWaltran;

Var
j:integer;

Begin

if isign =1 then
For j:=O to (2*N)-l Do

begin
data[j]:=input-block[j];

end;
if isign =-1 then

For j:=O to (2*N)-l Do
begin

data[j] :=V2[j];
end;

End;

Procedure PastCurrentBlock

This routine concatenates the current and previous blocks *)
together: [(previous)(current)]. Each block is N points *)
long; the combination is 2*N points long.

F-23

Called By:

Main Program

Routines Called:

Procedure Prepare-input-block-forWaltran
Procedure Waltran

Variables:
input-block[j] : (previous blck,current blck)

Procedure PastCurrentBlock;

Var
j:integer;

Begin

isign:=1;

For j:=O to (2*N)-l Do
Begin

if (k*N-N+j<O) then

input-block[j]:=O

else

input-block[j]:=input[j+k*N-N];

End;

Prepare-input-block-forWaltran;
Waltran;

End;

Procedure Load-input

(* This procedure reads in the input sequence from a data

(* file.

Called By:
Main Program

Routines Cal.ed: None

Procedure Load-input;

Var
j:integer;

Begin

For j:=O to datasize-1 Do

ReadLn(infile,input[j]);

End;

Procedure Load-desired

(* This procedure reads in the desired sequence from a data *)

(* file.

Called By:

Main Program s)
Routines Called: None

Procedure Load-desired;

Var

j:integer;

Begin

For j:=O to datasize-1 Do
ReadLn(desiredfile,desired[j]);

End;

Procedure Write-output

This procedure writes the filter output and error *)

vectors to data files.

Called By:

Main Program
Routines Called:None

Procedure Write-output;

Var

F-25

j:integer;

Begin
For j:=O to datasize-1 Do

Begin
WriteLn(outfile,y[j]);
WriteLn(errorfile,error[j]);

End;

End;

Procedure ClockOn;
Begin

GetTime(hr,m,s,slOO);
StartClock:=(hr*3600)+(m*60)+s+(slOO/100);

End;

Procedure ClockOff;
Begin

GetTime(hr,m,s,slOO);
StopClock:=(hr*3600)+(m*60)+s+(slOO/100);
WriteLn('Elapsed time = ',(StopClock-StartClock):0:2);

End;

Procedure Diagonal-ofX

(* This procedure creates the data vector X.
(* The X data vector represents the diagonal component
(* of a diagonal matrix that contains the DWT of the
(* concatenated previous and current input blocks.

Called By:
Main Program

Routines Called: None
Variables:

X[j] : diagonal values

Procedure Diagonal-ofX;
Var
j:integer;
power:real;

F-26

Begin

For j:0O to (2*N)-1 Do

begin

X[j] :=data[j];
(* WriteLn(Lst, I X[',j, I ,X[j]); *

end;

end;

Procedure Calculateavg-input-bin-pwr;

Var

num,j :integer;
Begin

num: =Block-.nwn- 1;

For k:1l to Block-nun-1 Do

Begin
Pastscurrent-block;

For j:0O to (2*14)-i Do
Begin

Pbin[j] :=Pbin[j]+Sqr(data[jJ);

End;

End;

For j:0O to (2*14)-i Do

Begin
Pbin[j]:=(1/num)*Pbin[j];

(* WriteLn(Lst, I Pbin(', j,) =',Pbin[j]); *

End;

End;

Procedure Calculatejnu;

Var

j :integer;
avgPwr real;

Begin

avgPwr :=0;

For j:0O to (2*14)-i Do

Begin

avgPwr:=avgPwr+Pbin[j] *(1/(2*N));

(* gain..ru[j]: Misadjust/(Pbin[j]+1.OE-8); *

F-27

End;
(* gain.mu[6]:=gainjmu[7]; *)

mu:=Misadjust/avgPwr;
WriteLn(Lst, ' gain constant mu = mu);

WriteLn(Lst, ' average power = , avgPwr); *)
End;

Procedure Perform.MatrixMultiply

(* Multiplies a 2Nx2N matrix by a 2Nxi dimension vector. *)
(* The matrix in all cases is a diagonal matrix so the
(* r-ttine automatically ignores the off diagonal terms
(* during the multiplication.

Called By:
Procedure Calculatey
Procedure Calculate-Gradient

Routines Called: None
Variables:

(* V2[j] : the Aesulting 2Nxl vector

Procedure PerformjMatrixMultiply(var M,V: RealArrayN2);

Var
j:integer;

Begin

For j:=O to (2'N)-i Do
Begin

V2[j] :=M[j]*V[j];
End;

End;

Procedure Calculatey

(* This procedure calculates the output sequence values
(* for the current block being processed. The output is

F-28

(* equal to the last N terms of the inverse DWT of the
(* product of X and the walsh domain weight vector.

Called By:

Main Program
Routines Called:

Procedure Waltran
Procedure Prepare-inputblock-forWaltran
Procedure PerformMatrixMultiply

Variables:
y[j] : filter output

Procedure Calculate-y;
Var
j:integer;

Begin

PerformMatrixMultiply(X,H);
isign:=-1;
Prepareinput-blockdforWaltran;
Waltran;
For j:=O to N-I Do

Begin
y[k*N+j]:=data[N+j];

(* WriteLn(Lst, ' y(',k*N+j,')= ',y[k*N+j]); *)
End;

End;

Procedure Calculate-error

(* This procedure calculates the error sequence values for *)
(* the current block and the complex error vector.
(* The error block for the current input
0* block equals the current desired block minus the output *)
(* for the current input block. The error vector
(* ERR[j], equals the FFT of the zero padded error block:
(* DWT[N zeros, error block].

0' Called By:
0* Main Program

F-29

(* Routines Called:
Procedure Prepareinput-block-forWaltran
Procedure Waltran

(* Variables:
ERR[j] : the DWT of the error sequence

for the current block

Procedure Calculate-error;
Var

j : integer;
e: RealArrayN2;

Begin

For j:=O to N-i Do
begin

ej] :=0;
input.block[j] :=e[j];

end;
For j:=N to (2*N)-I Do

Begin
e [j] :=desired [k*N+j-N] -y [k*N+j-N];
input.block[j] :=e[j];
error[k*N+j-N] :e[j];

WriteLn(Lst, ' e(&,k*N+j-N,')=', error[k*N+j-N]); *)
End;

isign:=1;
Prepare-input-block-forWaltran;
Waltran;

For j:=O to (2*N)-I Do
begin

ERR[j] :=data[j];

end;
End;

Procedure Calculate-Gradient

(* This procedure calculates the gradient sequence for the *)
(* current block being processed. The gradient sequence
(* equals the first N terms of the inverse DWTT of the
(* product of X and the error vector E.

- :30

(* Called By:
Main Program

(* Routines Called:

Procedure PerformMatrixMultiply

Procedure Prepare-input-block-forWaltran
Piocedure Waltran

(* Variables:
grad[j]: gradient sequence for current block

Procedure Calculate-Gradient;

Var
j:integer;

Tgrad:RealArrayN2;

Begin

PerformMatrixMultiply(X,ERR);

For j:=O to (2*N)-I Do

Begin

grad[j] :=V2[j];
WriteLn(Lst, ' Grad(', j, ')= ', grad[j]); *)
End;
isign:=-1;

Prepare-input-block-forWaltran; *)

Waltran;

For j:=O to (2*N)-I Do *) (* Calculate the time z)

Begin *) (* domain gradient *)

Tgrad[j]:=data[j];
WriteLn(Lst, ' grad(',j,')= ',Tgrad[j]); *)

End;

End;

Procedure Update-weights

(* This procedure updates the filters tap weights. The
new weights equal the old weights plus the product of the *)

(* gain constant and the gradient vector. The)

I-3I

(* gradient vector equals the DWT of the gradient
(* sequence padded with N zeros: DWT[(grad seq), N zeros]. *)
(* s

Called By:
(* Main Program s)

Routines Called: *)

Procedure Prepare-inputblock-forWaltran
(* Procedure Waltran

Variables: -)
H[j] : Walsh domain weight vector s)

Procedure Update-weights;

Var
tap,j:integer;

Begin

For tap:O to (2*N)-I Do

begin
H[tap] :=H[tap]3mu*grad[tap];

(* WriteLn(Lst, ' H(', tap, ') , H(tap]); *)

end;

End;

(5 Procedure time-domain-wts

Procedure time-domain-wts;
Var
j:integer;

Begin

For j:=O to (2*N)-1 Do

Begin

V2[j] :=H[j];
Cs WriteLn(Lst, 'H(',j,')='. H[j]); s)

End;

isign:=-1;
Prepare._input.block-.forWaltran;
Waltran;

(s WriteLn(Lst, ' Block ', k); *)

For j:=O to (2*N)-I Do

Begin

F-

W[j] :=data[j];

End;

End;

(***P S****)

uProcedure Setweights*

Procedure Set~weights;

Var

j:integer;

Begin

W[O] :=48.4796;
W[1] :=5.r844;
W[2] :=5.0732;
W[3] :=10.7032;

For j:=O to (2*N)-l Do

input-block[j] :=W[j];
isign:=l;

Prepare-input-block-forWaltran;

Waltran;

For j:=O to (2*N)-I Do
H[j] :=data[j];

End;

(************************ Main Program *************************)

Begin

Open-input.files;

Open-output-files;

Init-var;

Load-input;

Load-desired;

Calc-numblocks;
Calculate-avg-input-bin-pwr;

Calculate-mu;
(* Set-weights; *)

(* ClockOn; *) (* Turn Clock on

For k:=O to Block-num-l Do

Begin
(* WriteLn(I processing block', k); *)

F-33

Past-current-block;

Diagonal-ofX;

Calculate-y;

Calculate-error;

Calculate-gradient;

Update-weights;
(* timedomain-wts; *)

end;
(* ClockOff; *) (*Display elapsed time*)
(* WriteLn; *)

(* Write('Press Enter..
(* ReadLn; *)

(* time-domain-wts; *)

Write-output;

Close.input.files;
Close-output-files;

End.

F-34

F.3 FDF Filter Listing

This is the Turbo Pascal 6.0 listing of the FDF program.

Program Freq-adf il;

{$N+}

Uses Printer,CRT,DOS;

CONST

N=16; (**N is block size*)

datasize=992;

Misadjust=O. 1;

TYPE

RealArrayN4=APRAY [1. .4*N] of real;
RealArrayN2=ARRAY[1. .2*NJ of real;

InputArray=ARRAY[1. .datasize] of real;
OutputArray=ARRAY [1..datasizel of real;

VAR

hrr,m,s ,slOO:Word;

StopClock, StartClock: Real;

data:RealArrayN4;

XR,XI,XI-conj,HR,ER,WR,W,EI,HI,V2R,V21,input-.block,grad:RealArrayN2;
igain-mu,rgain-mu,Pbinr,Pbini :RealArrayN2;

desired,input:Ini tArray;
error ,y:OutputArray;

isign,nn,Block-.num,k: integer;

mu:real;

infile ,desiredfile ,errorfile ,outfile:text;

weightO,weightl ,weight2,weight3,weight4,weight5,weight6,weight7:text;

Procedure Init-var

(*This procedure initializes all variables.

Called By:

Main Program
Routines Called: None

Procedur-e Init-var;

Var
j :integer;

Begin

Block.num:=O;
For j:=1 to datasize Do

Begin
error[j] :=O;
desiredlj] :0;
input[j] :=O;
ylj] :=O;

End;
For j:=1 to 2*N Do

Begin
XR[j :0O;
XI[j] :0;
XI-conj[j] :0;
HR[j] :0;
HI[j] :0;
ER[j] :0;
EI~j] :0;
V2R[j] :0;
V21[j :=0;
input-.block[j :0O;
grad[j] :0;
igainjnu[j] :0;
rgainjnu[j]:0O;
Pbinr[j] :0;
Pbini~j :0O;

End;

End;

Procedure Open-.input-files;
Begin

Assign(infile, 'A:S53N.Dat');
Assign(desiredfile, 'A:S5.Dat');
Reset(infile);
Reset(desiredfile);

End;

Procedure Open-output-files;
Begin

Assign(errorfile, 'B:FFS3SNE.Dat');
Rewrite(errorfile);
Assign(outfile, 'B:FFS4SNY.Dat');

F-36

Rewrite(outfile);

End;

Procedure Closeinputdfiles;
Begin

Close(infile);
Close(desiredfile);

End;

Procedure Close-output-files;
Begin

Close(errorfile);
Close(outfile);

End;

Procedure Calc-numblocks

This procedure calculates the number of blocks to

be processed.

Called By:
Main Program

Routines Called: None

Procedure Calc-numblocks;

Begin

Block-num:=datasize div N;

End;

Procedure FFT

(* This procedure calculates the forward and inverse Fast
(* Fourier Transform of a data sequence that has a power of *)
(* 2 number of data points. Both real and complex data can *)
(* be transformed. The routine has two sections. The first
(* section sorts the input data into bit-reversed order. The *)
(* second section has an outer loop that is executed log N

F-37

(* (power 2) times. Transforms of length 2,4,8,..., N are
(* calculated in this section. The section has two nested
(* inner loops that execute the Danielson-Lanczos Lemma.
(* Data tranformed or inverse transformed is entered into
(* the vector data[j] according to R1,I1,R2,I2,...RN,IN;

(* where R1 and I1 represent the real and imaginary
(* components of the first data value or transform value.
(* Transform results are returned in data[j] in the same fashion.*)

(* The forward and inverse transforms are indicated to the
(* routine by setting the isign flag: isign=i indicates
(* forward transform, isign=-I indicates inverse transform. *)
(* In the case of inverse transform the resultant
(* is scaled by a factor equal to the number of points

(* transformed.

Called By:

Procedure PastCurrentBlock

Procedure Calculatey
Procedure Calculate-error
Procedure Calculate-Gradient

Procedure Update-weights
Routines Called: None

Variables:

isign: indicates inverse or forward transform

data[j]: input and output
nn: number of points to be transformed
n : number of Re and Im value in data~j] =2*nn

Procedure FFT;

VAR
ii,jj,n,mmax,m,j,istep,i:integer;

wtemp,wr,wpr,wpi,wi,theta:double;

tempr,tempi,wrs,wis:real;

Begin

n:=64; (* 2 times 2N *)

nn:=32; (* 2N *)

j:=1;

For ii:=1 To nn Do Begin

i:=2*ii-l;

If j>i Then Begin
tempr:=data[j];

F-38

terpi:=data[j+1];

data[j] :=data[i] ;

data[j+1] :=data[i+1);
data[i] :=tenpr;

End;

m:=n DIV 2;

While (mn >= 2) And Q > rn) Do Begin
j :j-m;
m:=rn DIV 2

End;
j :j+n;

End;

mmrax:=2;
While n > mmrax Do Begin

istep:=2*mmxax;
theta:=6.28318530717959/(isign*mnax);
wpr:=-2.O*sqr(sin(O.5*theta));
wpi:=sin(theta);
wr:=1.O;
wi:=O.O;
For ii:=1 To nimax DIV 2 Do Begin

rn:=2*ii-1;
wrs:=wr;
wis :wi;
For jj:0O To (n-rn) DIV istep Do Begin

i:=m+jj*istep;
j:=i+rnmax;
tempr:=wrs*data[j]-wis*data[j+1];
tempi :wrs*data[j+1J+wiLs*data[j];
data~j] :=data[i] -ternpr;
data[j~l] :=data[i+l]-tenpi;
data [i] =data [i] +ternpr;
data[i*1 :=data[i+1]+tempi

End;

wtemp:=wr;
w:wr*wpr-wi*wpi+wr;
w:wi*wpr+wtemp*wpi+wi;

F-39

End;

mmax:=istep;

End;

End;

Procedure Prepare-input-blockforFFT

(* This routine enters the data values into data[j] in
(* preparation for forward or inverse FFT.

Called By:
Procedure PastCurrentBlock

Procedure Calculatey*
Procedure Calculate_error
Procedure Calculate-Gradient
Procedure Update-weights

Routines Called: None

Procedure Prepare-input-blockjforFFT;

Var
j:integer;

Begin

if isign =1 then
For j:=1 to 2*N Do

begin
data[2*j-1]:=input.block[j];
data[2*j]:=O;

end;
if isign =-1 then

For j:=1 to 2*N Do
begin

datal[2*j-1] :=V2R[j];
data[2*j]:=V2I[jl

end;

F-4O

End;

Procedure PastCurrentBlock

This routine concatenates the current and previous blocks *)

together: [(previous)(current)]. Each block is N points *)
long; the combination is 2*N points long.

Called By:

Main Program
Routines Called:

Procedure Prepare-input-blockforFFT

Procedure FFT
Variables:

input-block[j] : (previous blck,current blck)

Procedure PastCurrentBlock;

Var

j :integer;

Begin

isign:=1;

For j:=l to 2vN Do
if (k*N-N+j--I<O) then

,nput-block[j]:=O

else

input-block[j]:::input[j+k*N-N];
Prepare.input-block-forFFT;

FFT;

End;

Procedure Load-input

(* This procedure reads in the input sequence from a .ata

(* file.

F-11

Called By:
Main Program

Routines Called: None

Procedure Load-input;

Var
j:integer;

Begin

For j:=l to datasize Do
ReadLn(infile,input[j]);

End;

Procedure Load-desired

(* This procedure reads in the desired sequence from a data *)
(* file.

Called By:
Main Program

Routines Called: None

Procedure Loal-desired;
Var

j:integer;

Begin

For j:=1 to datasize Do
ReadLn(desiredfile,desired[j]);

End;

Procedure Write-output

F-,t2

This procedure writes the filter output and error
vectors to data files.

Called By:
Main Program*

Routines Called:None

Procedure Write-output;
Var

j:integer;

Begin
For j:=l to datasize Do

Begin
WriteLn(outfile,y[j]);
WriteLn(errorfile,error[j]);

End;

End;

Procedure ClockOn;
Begin

GetTime(hrr,m,s,slOO);
StartClock:=(hrr*3600)+(m*60)+s+(slOO/100);

End;

Procedure ClockOff;
Begin

GetTime(hrr,m,s,slOO);
StopClock:=(hrr*3600)+(m*60)+s+(slOO/100);
WriteLn('Elapsed time = ',(StopClock-StartClock):0:2);

End;

Procedure Diagonal-ofX

(* This procedure creates two data vectors: XR and XI.
(* The two data vectors represent the diagonal component
(* of a diagonal matrix that contains the FFT of the

(* concatenated previous and current input blocks. XR
(* represents the real part of each value and XI represents *)
(* the corresponding imaginary part:(diagonal of X)=XR XI. *)

F-43

Called By:
Main Program

Routines Called: None
Variables:

XR[j] diagonal real values
XI[j] :diagonal imaginary values

Procedure Diagonal-of-X;
Var
j :integer;
power: real;

Begin

For j:=1 to 2*N Do
begin

XR[j] :data[2*j-1];

XI [j] :=data [2*j]I;
WriteLn(Lst, I X(',j-1,')) ',XR[j],'+i',XI[j]);

end;

end;

Procedure Calculate-.avg-.input-.binpwr;
Var
num,j :integer;
Begin

num:=Block..num-1;
For k:=l to Block-.num-1 Do

Begin
Past-current-block;
For j:=1 to 2*N Do

Begin
Pbinr[j] :=Pbinrtj]+Sqr(data[2*j-1]);
Pbini[j :=Pbinij]4Sqr(data[2*j]);

End;
End;

For j:=l to 2*N Do
Begin

Pbinr~j :=(1/num)*Pbinr[j];
Pbini[j :=(/num)*Pbini~j];

End;

End;

Procedure Calculate-mu;

Var

j :integer;
avgPwr ,ravgPwr, iavgPwr:Real;

Begin

avgPwr:0O.0;

ravgPwr:=0;
iavgPwr:=0;

For j:=1 to 2*N Do
Begin

ravgPwr:=ravgPwr+Pbinr Iji;
iavgPwr:=iavgPwr+Pbini [j];
rgain-nu~j] :=Misadjust/(Pbinr~j]+l.OE-8); s

igain-mu[j] :=Misadjust/(Pbini[j]+l.OE-8); *
WriteLn(Lst, 'rmu(',j,') ',rgain-.mu~j]); *

WriteLn(Lst, 'imu(',j,') =,igain-mu[j]); *

End;

avgPwr:=(ravgPwr+iavgPwr)* (l/(4*N));
WriteLn(Lst, ' avgPwr = ',avgPwr);

mu: =Misadj ust/avgPwr;

WriteLn(Lst, I gain constant mu.=' mu);

End;

Procedure Conjugate-X

(* This procedure creates the conjugate of the diagonal

(* matrix X. The routine creates the conjugate of X

(* by creating XI..conj~j] which is the negative of XI~j]. s

(* Then, the conjugate of the diagonal of X equals

(i XR+XI-conj.

Called By:

Main Program 2

C. Routines Called: None

Variables:

(2 XI-conj[j] : -XI~j]

Procedure ConjugateX;
Var
j:integer;

Begin

For j:=l to 2*N Do
XI.conj [j] :=-XI[j];

End;

Procedure PerformatrixMultiply

(* Multiplies a 2Nx2N matrix by a 2Nxl dimension vector. *)
(* The matrix in all cases is a diagonal matrix so the
(* routine automatically ignores the off diagonal terms

(* during the multiplication. s)
(* *)

Called By:
Procedure Calculatey s)

Procedure Calculate-Gradient
Routines Called: None
Variables: s)

V21[j3 : the resulting vector imaginary component
V2R(j] : the resulting vector real component

(* *)

Procedure PerformMatrixultiply(var MR,MI,VR,VI: RealArrayN2);

Var
j:integer;
dRI,dR2,dil,dI2:double,

RRI,RR2,RII,RI2:real;

Begin

For j:=1 to 2*N Do
begin

dRl: =R[j]*VR[j];
dR2::-(MI(j]*VItj]);
RRI:=dRI;

F.16

RR2:=dR2;
V2R[j]:=RRI+RR2;

dIi:=MR[j]*VI[j];
dl2:=MI[j]*VR[j];

RI1:=dI1;

R12:=dI2;
V21[j]:=RII+RI2;

end;

End;

Procedure Calculate-y

(* This procedure calculates the output sequence values
(* for the current block being processed. The output is

(* equal to the last N terms of the inverse FFT of the

(* product of X and the complex weight vector.

Called By:

Main Program

Routines Called:

Procedure FFT
Procedure Prepare-input-block-forFFT

Procedure Perform-MatrixMultiply
Variables:

y[j] : filter output

Procedure Calculate-y;

Var

j:integer;

Begin

PerformMatrixMultiply(XR,XI,HR,HI);

isign:=-1;

Prepare-input-block-forFFT;

FFT;

For j:=1 to N Do

y[k*N+j] :=(i/(2*N))*data[2*(N+j)-I];

End;

F-47

(*** ********************)

Procedure Calculate-error

(* This procedure calculates the error sequence values for *)

(* the current block and the complex error vector.
(* The error block for the current input

(* block equals the current desired block minus the output *)
(* for the current input block. The complex error vector

(* E[j], equals the FFT of the zero padded error block:

(* FFT[N zeros, error block].

(* Called By:
Main Program

(* Routines Called:

Procedure Prepare.input-block-forFFT
Procedure FFT

(* Variables:

ER[j] : real part of the FFT of the error sequence *)

for the current block
EI[j] : imaginary part of the FFT of the error seq *)

for the current block

Procedure Calculate-error;

Var
j:integer;

e:RealArrayN2;

Begin

For j:=1 to N Do

begin

e[j] :0;
inputblock[j] :=e[j];

end;

For j:=N+1 to 2*N Do

Begin
e[j] : =desired [k*N+j-N]-y [k*N+j-N];
input.block[j] :=e[j];
error [k*N+j-N] :=e[j]:

End;
isign:=1;

Prepareinput-block-forFFT;

F-'8

FFT;
For j:=l to 2*N Do

begin
ER[j] :=data[2*j-1];

El [jI :=data[2*j];
end;

End;

Procedure Calculate-Gradient

(* This procedure calculates the gradient sequence for the *)

(* current block being processed. The gradient sequence

(* equals the first N terms of the inverse FFT of the

(* product of X conjugate and the error vector E.

(* Called By:

Main Program

(* Routines Called:
Procedure PerformMatrixMultiply

Procedure Prepare-input-block-forFFT
Procedure FFT

(* Variables:

grad[j]: gradient sequence for current block

Procedure Calculate-Gradient;

Var

j:integer;

Begin

PerformMatrixMultiply(XR,XI.conj,ER,EI);

isign:=-1; (*calc inverse *)
Prepare-input-block-forFFT; (* FFT of X-conj*E *)

FFT;

For j:=1 to N Do

grad~j]:=l/(2*N)*data[2*j-1]; (* grad = Ist N terms*)
For j:=N+l to 2*N Do (* of inv FFT

gradj) :=0;

F-49

End;

Procedure Update-weights

(* This procedure updates the filters complex weights. The *)

new weights equal the old weights plus the product of the *)

(* gain constant and the complex gradient vector. The
(* complex gradient vector equals the FFT of the gradient *)

(* sequence padded with N zeros: FFT[(grad seq), N zeros]. *)

Called By:
Main Program

Routines Called:

Procedure Prepare-input-block-forFFT

Procedure FFT
Variables:

HR[j] : real part of complex weight vector

HI[j] : imaginary part of complex weight vector

Procedure Update-weights;

Var

tap,j:integer;

Begin

For j:=l to 2*N Do
input-block[j]:=grad[j];

isign:=1;
Prepare-input-blockforFFT;

FFT;
For tap:=l to 2*N Do

begin
HR[tap]:=HR[tap]+mu*data[2*tap-1];

HI[tap]:=HI[tap]+mu*data[2*tap];

end;

End;

Procedure time-domain-wts

F-50

Procedure time-domain-.wts;
Var

j :integer;
Begin

For j:=1 to 2*N Do
Begin

V2R[j] :=HR[j];
V21[j]:=HI[j];

(WriteLn(Lst, ' H(', j,')= ',HR[j],'+i ',HI~j]); *

End;
isign:=-1;
Prepare..input-blockjfor-FFT;
FFT;

(* WriteLn(Lst, 'Block ',k); *
For j:=1 to 2*N Do

Begin

WI~j :=(1/(2*N))*data[2*j];
End;

End;

(*******************Main Program *************

Begin
Open..input .f iles;
Open-output-files;
Init-var;
Load-input;
Load-desired;
Clock~n; (*Turn clock on
Calc-.numblocks;
Calculate..avg-input-bin.pwr;
Calculate-.mu;
For k:=O to Block-num-1 Do
Begin
WriteLn(' processing block', k);
Past-.current-.block;
Diagonal-otX;
Calculate.y;
Calculate-error;
ConjugateJX;

F-.51

Calculate-.gradient;

Update-.weights;

time-domain-wts;

end;
(*ClockOff; *)(*Display elapsed time*)

(*WriteLn; *
(Write('Press Enter...';)

(*ReadLn;

Write-output;

Close-.input-files;

Close.output-.files;

End.

F.4 TDF Filter Listing

Trlis is the Turbo Pascal 6.0 listing of the TDF program.

Program TDF;
{$N+}

Uses Printer,CRT,DOS;

CONST

datasize=992;

N=16;

Misadjust=O.1;

TYPE

Realarray=ARRAY[O. .datasize-1] of real;

RealarrayN=ARRAY [0..N-1] of real;

VAR

k:Integer;

h,m,s ,slOO:Word;

Mu,Px,StartClock,StopClock:Real;
errorfile ,outf ile ,infile ,desiredf ile :Text;

error ,desired,input ,output:RealA'array;
weight-array:RealarrayN;

weight0,weightl,weight2,weight3,weight4,weightS,weight6,weight7:text;

(**************Initialize Variables****************)

Procedure Init-Var;

Var

j :integer;

Beg in

For j:=O to datasize-1 Do

Begin

desired[j] :0.0;

error[j] :=0.0;

iLnput~j] :0O.;

output[j] :0.0;

End;

For j:0O to N-1 Do

Weight-array[j :=O;
End;

Procedure Open-input-.files;
Begin

Assign(infile, 'A:S53N.Dat');
Assign(desiredfile, 2A:SS.Dat');
Reset(infile);
Reset(desiredlile);

End;

Procedure Open-output-files;
Begin

Assign(errorfile, 'B:TFS3SNE.Dat');
Rewrite(errorfile);
Assign(outfile, 'B:TFS4SNY.Dat'); *
Rewrite(outfile);

End;

Procedure Close-input-files;
Begin

Close(infile);
Close(desiredfile);

End;

Procedure Close-output-.files;
Begin

Close Cerrorfile);
(* Close(outfile); *

End;

Procedure Load- input;
Var

j :integer;
Begin

For j:0O to datasize-1 Do
ReadLn(infile, inputlj);

End;

Procedure Load-desired;
Var

j integer;
Begin

For j:=0 to datasize-1 Do

ReadLn(desiredfile, desired~ji);
End;

Procedure Clock~n;

Begin
GetTime(h,m,s,slOO);

StartClock:=(h*3600)+(m*60)+s+(slOO/100);

End;

Procedure ClockOff;

Begin

GetTime(h,m,s,slOO);

StopClock:=(h*3600)+(m*60)+s+(slOO/100);

WriteLn('IElapsed time ='(StopC lock- St artC o ck) :0: 2);
End;

Procedure Write-.output;

Var

j :integer;
Begin

For j:=0 to datasize-1 Do

Begin
WriteLn(outfile, output[j]); *

WriteLn(errorfile,error[j]);

End;

End;

Procedure Calculate-.mu;

Var

j :integer;

Begin

Px:0O;

For j:0O to datasize-1 Do
Px :=Px+Sqr(input Fi])*(1/datasize);

mu:=(/)*(1/Px)*Mis idjust;
(s WriteLn(Lst, 'mu= 1, mu); *

WriteLn(Lst, 'Signal Power = ',Px); *
End;

Procedure Calculate.y;

Var

j :integer;

F-55:

sum-.var: real;

Label End-.loop;

Begin

sum-.var:=O;

For j:0O to N-1 Do

Begin

If (k-j<O) Then Goto Endjloop;

sum-.var:=sumvar+weight-array[j]*input [k-j];

End-loop:

End;

output [ki =sum-var;

End;

Procedure Calculate-error;

Begin
error[k] :=desired~k]-output[k];

End;

Procedure Uipdate-.weights;

Var
j :integer;

Label Skip-.wt-.update;

Begin
For j:0O to N-i Do

Begin

If (k-j<O) then Goto Skip-wt-update;
weight-.array[j] :weight-array~j]+

2*mu*error~k * input [k-j];
Skip-.wtupdate:

End;

End;

Procedure Store-.weights;

Var

j integer;
Begin

For j:0O to N-i Do

Begin

If j0O then
WriteLn(Lst ,weight-.array jiD;

If j=1 then
WriteLn(Lst ,weight-.array [jj);

If j=2 then

WriteLn(Lst ,weight-array [ii);
If j=3 then

F-:5 6

WriteLn(Lst ,weight..array [j]);
If j=4 then
WriteLn(Lst ,weight-array[j]);

If j=5 then
WriteLn(Lst ,weight-array[j]);

If j=6 then
WriteLn(Lst ,weight-array[j]);

If j=7 then
WriteLn(Lst ,weight-array[j]);

End;
End;

(****************** Main Program *************)

Begin
Open..input-.files,
Open..output..files;
Init-Var;
Load-.input;
Load-desired;
(* Clock~n; *)
Calculate-.mu,

For k:0O to datasize-1 Do
Begin

Calculate-y;
Calculate-.error;
Update-weights;
(* Store-weights; *

End;
(* Store-.weights; *

ClockOff; *) (*Display elapsed time*')
WriteLn;
WriteC'Press Enter..'); *
ReadLn;

Write-.output;
Close.input..files;
Close.output..files;

End.

F- 5 7

Bibliogi-aphy

I. B~eauchamp. Keineth G. Applicalio?:s of W1alsh and IRclahul Functions. Orlando FL:
A\cadlemic Press. Inc.. 19841.

2. Cowan. Colin F.N. and Peter M. Grant. Ada plirc Fillers. Englewood Cliffs NJi: P~rentice
Hall, Inc.. 198.5.

3. Kepley. Capt .Jeffery A. Estimation of I--rok(cd Ficl4z Uslng a Tinie-Sequenced Adaptiv(
Fillei- Wiith Thc 11odificd '- Vector .'lgor-itlzm. MS thesis. AFIT/GE /ENG\(/90D-1O.
School of Engineering. Air Force Institute of Technology (AC). Wright-Patterson A\FB
0O1, December 1990. (AD-A230-174).

-1. K.M.Wong1 and Y.G..Jan. '-Adaptive Walsh Equalzer for D~ata Transmission.~ lEE
Procecdzings. 130(2): 15:3-160 (NI arch 198:3).

5. Oppenhecim, Alan V. and Ronald WV. Schafer. Discrte- Timef Signal Pr-ocesin. Engle-
wvood Cliffs NJ: Prentice Hall. Inc., 1989.

6. Press. W\illiam 1-1. and others. Vumeical Recipcs In Pascal. New York NY: Camnbridge
Universitv Press. 1989.

7. R.D.Brown. "A recursive algorit hm for sequencv-orelereel fast WValsh transformis.' IEEE
Transactions in Computing. C- 26:81 9-822 (977).

S. VanCleave. .James. Walsh Prepriocessor. Final Report. 20 Ielbruarv 1979-3li March
1980 Contract F:30602-79-C-004S. Lansdale PA: American Electronic Laboratories. Inc..
August 1980. (AD.A091 18,8).

9. XWidrow. B~ernard andl Samnuel I). Stearns. . dapla. Siq~nal l'vressinq. lnglewo-l Cliffs
.NJ: P~rentice Hlall. Inc.. 198-5.

10. Williams. Capt Rlobert. -EENG 791 class lecture.- School of Engineering. A\ir Force
Institute of Technology (AU). Wright-Patterson AF13 011. March 1991.

11. WVilliams. Capt Pobert. -Personal Interview on Spaced-based svstents." Sclieil of FEn-F
Iteering. Afir Force lust ituie of Technology (AV1). Wright-Platterson AF13 011. October
1991.

12. Williams. Hoherl. Adapir(bile r-ing o~f .Vousaatlonary Signals 17.ing a Mlodifihd P-~
IVctor .-lloritlim. Ph~D dissertation. I nirersi1% of D~ayton. D~ayton 011. IDecember
198S9.

